IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52744-1.html
   My bibliography  Save this article

Dynamic patterns of functional connectivity in the human brain underlie individual memory formation

Author

Listed:
  • Audrey T. Phan

    (National Institutes of Health
    Harvard−MIT Division of Health Sciences and Technology)

  • Weizhen Xie

    (National Institutes of Health
    University of Maryland)

  • Julio I. Chapeton

    (National Institutes of Health)

  • Sara K. Inati

    (National Institutes of Health)

  • Kareem A. Zaghloul

    (National Institutes of Health)

Abstract

Remembering our everyday experiences involves dynamically coordinating information distributed across different brain regions. Investigating how momentary fluctuations in connectivity in the brain are relevant for episodic memory formation, however, has been challenging. Here we leverage the high temporal precision of intracranial EEG to examine sub-second changes in functional connectivity in the human brain as 20 participants perform a paired associates verbal memory task. We first identify potential functional connections by selecting electrode pairs across the neocortex that exhibit strong correlations with a consistent time delay across random recording segments. We then find that successful memory formation during the task involves dynamic sub-second changes in functional connectivity that are specific to each word pair. These patterns of dynamic changes are reinstated when participants successfully retrieve the word pairs from memory. Therefore, our data provide direct evidence that specific patterns of dynamic changes in human brain connectivity are associated with successful memory formation.

Suggested Citation

  • Audrey T. Phan & Weizhen Xie & Julio I. Chapeton & Sara K. Inati & Kareem A. Zaghloul, 2024. "Dynamic patterns of functional connectivity in the human brain underlie individual memory formation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52744-1
    DOI: 10.1038/s41467-024-52744-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52744-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52744-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weizhen Xie & Wilma A. Bainbridge & Sara K. Inati & Chris I. Baker & Kareem A. Zaghloul, 2020. "Memorability of words in arbitrary verbal associations modulates memory retrieval in the anterior temporal lobe," Nature Human Behaviour, Nature, vol. 4(9), pages 937-948, September.
    2. Shinya Ito & Michael E Hansen & Randy Heiland & Andrew Lumsdaine & Alan M Litke & John M Beggs, 2011. "Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
    3. Weizhen Xie & Julio I. Chapeton & Srijan Bhasin & Christopher Zawora & John H. Wittig & Sara K. Inati & Weiwei Zhang & Kareem A. Zaghloul, 2023. "The medial temporal lobe supports the quality of visual short-term memory representation," Nature Human Behaviour, Nature, vol. 7(4), pages 627-641, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Gu & Yang Qi & Pulin Gong, 2019. "Rich-club connectivity, diverse population coupling, and dynamical activity patterns emerging from local cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-34, April.
    2. Zhai, Lu-Sheng & Zong, Yan-Bo & Wang, Hong-Mei & Yan, Cong & Gao, Zhong-Ke & Jin, Ning-De, 2017. "Characterization of flow pattern transitions for horizontal liquid–liquid pipe flows by using multi-scale distribution entropy in coupled 3D phase space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 136-147.
    3. Shinya Ito & Fang-Chin Yeh & Emma Hiolski & Przemyslaw Rydygier & Deborah E Gunning & Pawel Hottowy & Nicholas Timme & Alan M Litke & John M Beggs, 2014. "Large-Scale, High-Resolution Multielectrode-Array Recording Depicts Functional Network Differences of Cortical and Hippocampal Cultures," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-16, August.
    4. Nicholas Timme & Shinya Ito & Maxym Myroshnychenko & Fang-Chin Yeh & Emma Hiolski & Pawel Hottowy & John M Beggs, 2014. "Multiplex Networks of Cortical and Hippocampal Neurons Revealed at Different Timescales," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-43, December.
    5. Kwang Il Ryom & Vezha Boboeva & Oleksandra Soldatkina & Alessandro Treves, 2021. "Latching dynamics as a basis for short-term recall," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52744-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.