Author
Listed:
- Shibashis Paul
(The University of Tennessee, Knoxville
The University of Texas at Dallas)
- Joy Adetunji
(The University of Tennessee, Knoxville)
- Tian Hong
(The University of Texas at Dallas)
Abstract
Understanding self-organized pattern formation is fundamental to biology. In 1952, Alan Turing proposed a pattern-enabling mechanism in reaction-diffusion systems containing chemical species later conceptualized as activators and inhibitors that are involved in feedback loops. However, identifying pattern-enabling regulatory systems with the concept of feedback loops has been a long-standing challenge. To date, very few pattern-enabling circuits have been discovered experimentally. This is in stark contrast to ubiquitous periodic patterns and symmetry in biology. In this work, we systematically study Turing patterns in 23 elementary biochemical networks without assigning any activator or inhibitor. These mass action models describe post-synthesis interactions applicable to most proteins and RNAs in multicellular organisms. Strikingly, we find ten simple reaction networks capable of generating Turing patterns. While these network models are consistent with Turing’s theory mathematically, there is no apparent connection between them and commonly used activator-feedback intuition. Instead, we identify a unifying network motif that enables Turing patterns via regulated degradation pathways with flexible diffusion rate constants of individual molecules. Our work reveals widespread biochemical systems for pattern formation, and it provides an alternative approach to tackle the challenge of identifying pattern-enabling biological systems.
Suggested Citation
Shibashis Paul & Joy Adetunji & Tian Hong, 2024.
"Widespread biochemical reaction networks enable Turing patterns without imposed feedback,"
Nature Communications, Nature, vol. 15(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52591-0
DOI: 10.1038/s41467-024-52591-0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52591-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.