IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52451-x.html
   My bibliography  Save this article

Drug-induced change in transmitter identity is a shared mechanism generating cognitive deficits

Author

Listed:
  • Marta Pratelli

    (University of California San Diego
    University of California San Diego)

  • Anna M. Hakimi

    (University of California San Diego
    University of California San Diego)

  • Arth Thaker

    (University of California San Diego
    University of California San Diego)

  • Hyeonseok Jang

    (University of California San Diego)

  • Hui-quan Li

    (University of California San Diego
    University of California San Diego)

  • Swetha K. Godavarthi

    (University of California San Diego
    University of California San Diego)

  • Byung Kook Lim

    (University of California San Diego)

  • Nicholas C. Spitzer

    (University of California San Diego
    University of California San Diego)

Abstract

Cognitive deficits are long-lasting consequences of drug use, yet the convergent mechanism by which classes of drugs with different pharmacological properties cause similar deficits is unclear. We find that both phencyclidine and methamphetamine, despite differing in their targets in the brain, cause the same glutamatergic neurons in the medial prefrontal cortex of male mice to gain a GABAergic phenotype and decrease expression of their glutamatergic phenotype. Suppressing drug-induced gain of GABA with RNA-interference prevents appearance of memory deficits. Stimulation of dopaminergic neurons in the ventral tegmental area is necessary and sufficient to produce this gain of GABA. Drug-induced prefrontal hyperactivity drives this change in transmitter identity. Returning prefrontal activity to baseline, chemogenetically or with clozapine, reverses the change in transmitter phenotype and rescues the associated memory deficits. This work reveals a shared and reversible mechanism that regulates the appearance of cognitive deficits upon exposure to different drugs.

Suggested Citation

  • Marta Pratelli & Anna M. Hakimi & Arth Thaker & Hyeonseok Jang & Hui-quan Li & Swetha K. Godavarthi & Byung Kook Lim & Nicholas C. Spitzer, 2024. "Drug-induced change in transmitter identity is a shared mechanism generating cognitive deficits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52451-x
    DOI: 10.1038/s41467-024-52451-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52451-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52451-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura N. Borodinsky & Cory M. Root & Julia A. Cronin & Sharon B. Sann & Xiaonan Gu & Nicholas C. Spitzer, 2004. "Activity-dependent homeostatic specification of transmitter expression in embryonic neurons," Nature, Nature, vol. 429(6991), pages 523-530, June.
    2. Hui-quan Li & Nicholas C. Spitzer, 2020. "Exercise enhances motor skill learning by neurotransmitter switching in the adult midbrain," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott R. Burlingham & Nicole F. Wong & Lindsay Peterkin & Lily Lubow & Carolina Dos Santos Passos & Orion Benner & Michael Ghebrial & Thomas P. Cast & Matthew A. Xu-Friedman & Thomas C. Südhof & Soham, 2022. "Induction of synapse formation by de novo neurotransmitter synthesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Juan Prada & Manju Sasi & Corinna Martin & Sibylle Jablonka & Thomas Dandekar & Robert Blum, 2018. "An open source tool for automatic spatiotemporal assessment of calcium transients and local ‘signal-close-to-noise’ activity in calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-34, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52451-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.