IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52320-7.html
   My bibliography  Save this article

Emergent (2+1)D topological orders from iterative (1+1)D gauging

Author

Listed:
  • José Garre-Rubio

    (Faculty of Mathematics)

Abstract

Gauging introduces gauge fields in order to localize an existing global symmetry, resulting in a dual global symmetry on the gauge fields that can be gauged again. By iterating the gauging process on spin chains with Abelian group symmetries and arranging the gauge fields in a 2D lattice, the local symmetries become the stabilizer of the XZZX-code for any Abelian group. By twisting the gauging map, we obtain codes that explicitly confine anyons, whose local creating operators violate an odd number of plaquettes. Their fusion results in either mobile dipole excitations twisting only half of the plaquette terms, or complete immobile Sierpiński-like excitations if we twist all the terms. Our construction naturally realizes any gapped boundary by taking different quantum phases of the initial (1+1)D globally symmetric system. In addition, our method also establishes a promising route to obtain higherdimensional topological codes from lower ones and to identify their gapped boundaries and their tensor network representations.

Suggested Citation

  • José Garre-Rubio, 2024. "Emergent (2+1)D topological orders from iterative (1+1)D gauging," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52320-7
    DOI: 10.1038/s41467-024-52320-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52320-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52320-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Pablo Bonilla Ataides & David K. Tuckett & Stephen D. Bartlett & Steven T. Flammia & Benjamin J. Brown, 2021. "The XZZX surface code," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Wu & Shimon Kolkowitz & Shruti Puri & Jeff D. Thompson, 2022. "Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52320-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.