IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52003-3.html
   My bibliography  Save this article

Acquisition parameters influence AI recognition of race in chest x-rays and mitigating these factors reduces underdiagnosis bias

Author

Listed:
  • William Lotter

    (Dana-Farber Cancer Institute
    Brigham & Women’s Hospital
    Harvard Medical School)

Abstract

A core motivation for the use of artificial intelligence (AI) in medicine is to reduce existing healthcare disparities. Yet, recent studies have demonstrated two distinct findings: (1) AI models can show performance biases in underserved populations, and (2) these same models can be directly trained to recognize patient demographics, such as predicting self-reported race from medical images alone. Here, we investigate how these findings may be related, with an end goal of reducing a previously identified underdiagnosis bias. Using two popular chest x-ray datasets, we first demonstrate that technical parameters related to image acquisition and processing influence AI models trained to predict patient race, where these results partly reflect underlying biases in the original clinical datasets. We then find that mitigating the observed differences through a demographics-independent calibration strategy reduces the previously identified bias. While many factors likely contribute to AI bias and demographics prediction, these results highlight the importance of carefully considering data acquisition and processing parameters in AI development and healthcare equity more broadly.

Suggested Citation

  • William Lotter, 2024. "Acquisition parameters influence AI recognition of race in chest x-rays and mitigating these factors reduces underdiagnosis bias," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52003-3
    DOI: 10.1038/s41467-024-52003-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52003-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52003-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52003-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.