IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51811-x.html
   My bibliography  Save this article

Channelrhodopsins with distinct chromophores and binding patterns

Author

Listed:
  • Yuanyue Shan

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

  • Liping Zhao

    (Westlake University)

  • Meiyu Chen

    (Westlake University)

  • Xiao Li

    (Westlake University)

  • Mingfeng Zhang

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine
    Fudan University)

  • Duanqing Pei

    (Westlake University
    Westlake Laboratory of Life Sciences and Biomedicine)

Abstract

Channelrhodopsins are popular optogenetic tools in neuroscience, but remain poorly understood mechanistically. Here we report the cryo-EM structures of channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii and H. catenoides kalium channelrhodopsin (KCR1). We show that ChR2 recruits an endogenous N-retinylidene-PE-like molecule to a previously unidentified lateral retinal binding pocket, exhibiting a reduced light response in HEK293 cells. In contrast, H. catenoides kalium channelrhodopsin (KCR1) binds an endogenous retinal in its canonical retinal binding pocket under identical condition. However, exogenous ATR reduces the photocurrent magnitude of wild type KCR1 and also inhibits its leaky mutant C110T. Our results uncover diverse retinal chromophores with distinct binding patterns for channelrhodopsins in mammalian cells, which may further inspire next generation optogenetics for complex tasks such as cell fate control.

Suggested Citation

  • Yuanyue Shan & Liping Zhao & Meiyu Chen & Xiao Li & Mingfeng Zhang & Duanqing Pei, 2024. "Channelrhodopsins with distinct chromophores and binding patterns," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51811-x
    DOI: 10.1038/s41467-024-51811-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51811-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51811-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyle Tucker & Savitha Sridharan & Hillel Adesnik & Stephen G. Brohawn, 2022. "Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yoon Seok Kim & Hideaki E. Kato & Keitaro Yamashita & Shota Ito & Keiichi Inoue & Charu Ramakrishnan & Lief E. Fenno & Kathryn E. Evans & Joseph M. Paggi & Ron O. Dror & Hideki Kandori & Brian K. Kobi, 2018. "Crystal structure of the natural anion-conducting channelrhodopsin GtACR1," Nature, Nature, vol. 561(7723), pages 343-348, September.
    3. Hideaki E. Kato & Feng Zhang & Ofer Yizhar & Charu Ramakrishnan & Tomohiro Nishizawa & Kunio Hirata & Jumpei Ito & Yusuke Aita & Tomoya Tsukazaki & Shigehiko Hayashi & Peter Hegemann & Andrés D. Matur, 2012. "Crystal structure of the channelrhodopsin light-gated cation channel," Nature, Nature, vol. 482(7385), pages 369-374, February.
    4. Takefumi Morizumi & Kyumhyuk Kim & Hai Li & Elena G. Govorunova & Oleg A. Sineshchekov & Yumei Wang & Lei Zheng & Éva Bertalan & Ana-Nicoleta Bondar & Azam Askari & Leonid S. Brown & John L. Spudich &, 2023. "Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K+ and Na+ selectivities," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. N. AzimiHashemi & K. Erbguth & A. Vogt & T. Riemensperger & E. Rauch & D. Woodmansee & J. Nagpal & M. Brauner & M. Sheves & A. Fiala & L. Kattner & D. Trauner & P. Hegemann & A. Gottschalk & J. F. Lie, 2014. "Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takefumi Morizumi & Kyumhyuk Kim & Hai Li & Elena G. Govorunova & Oleg A. Sineshchekov & Yumei Wang & Lei Zheng & Éva Bertalan & Ana-Nicoleta Bondar & Azam Askari & Leonid S. Brown & John L. Spudich &, 2023. "Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K+ and Na+ selectivities," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. T. Bertie Ansell & Wanling Song & Claire E. Coupland & Loic Carrique & Robin A. Corey & Anna L. Duncan & C. Keith Cassidy & Maxwell M. G. Geurts & Tim Rasmussen & Andrew B. Ward & Christian Siebold & , 2023. "LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Claire N Bedbrook & Kevin K Yang & Austin J Rice & Viviana Gradinaru & Frances H Arnold, 2017. "Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-21, October.
    4. Stanislav Ott & Sangyu Xu & Nicole Lee & Ivan Hong & Jonathan Anns & Danesha Devini Suresh & Zhiyi Zhang & Xianyuan Zhang & Raihanah Harion & Weiying Ye & Vaishnavi Chandramouli & Suresh Jesuthasan & , 2024. "Kalium channelrhodopsins effectively inhibit neurons," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Kyle Tucker & Savitha Sridharan & Hillel Adesnik & Stephen G. Brohawn, 2022. "Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51811-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.