IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51808-6.html
   My bibliography  Save this article

Structural basis for allosteric regulation of human phosphofructokinase-1

Author

Listed:
  • Eric M. Lynch

    (University of Washington)

  • Heather Hansen

    (West Virginia University)

  • Lauren Salay

    (University of Washington)

  • Madison Cooper

    (West Virginia University)

  • Stepan Timr

    (Czech Academy of Sciences)

  • Justin M. Kollman

    (University of Washington)

  • Bradley A. Webb

    (West Virginia University)

Abstract

Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively. Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.

Suggested Citation

  • Eric M. Lynch & Heather Hansen & Lauren Salay & Madison Cooper & Stepan Timr & Justin M. Kollman & Bradley A. Webb, 2024. "Structural basis for allosteric regulation of human phosphofructokinase-1," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51808-6
    DOI: 10.1038/s41467-024-51808-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51808-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51808-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hector Garcia-Seisdedos & Charly Empereur-Mot & Nadav Elad & Emmanuel D. Levy, 2017. "Proteins evolve on the edge of supramolecular self-assembly," Nature, Nature, vol. 548(7666), pages 244-247, August.
    2. Bradley A. Webb & Farhad Forouhar & Fu-En Szu & Jayaraman Seetharaman & Liang Tong & Diane L. Barber, 2015. "Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations," Nature, Nature, vol. 523(7558), pages 111-114, July.
    3. Pauline Pony & Chiara Rapisarda & Laurent Terradot & Esther Marza & Rémi Fronzes, 2020. "Filamentation of the bacterial bi-functional alcohol/aldehyde dehydrogenase AdhE is essential for substrate channeling and enzymatic regulation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Moritz Hunkeler & Anna Hagmann & Edward Stuttfeld & Mohamed Chami & Yakir Guri & Henning Stahlberg & Timm Maier, 2018. "Structural basis for regulation of human acetyl-CoA carboxylase," Nature, Nature, vol. 558(7710), pages 470-474, June.
    5. Jong-Ho Lee & Rui Liu & Jing Li & Chuanbao Zhang & Yugang Wang & Qingsong Cai & Xu Qian & Yan Xia & Yanhua Zheng & Yuji Piao & Qianming Chen & John F. Groot & Tao Jiang & Zhimin Lu, 2017. "Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junshang Ge & Yi Meng & Jiayue Guo & Pan Chen & Jie Wang & Lei Shi & Dan Wang & Hongke Qu & Pan Wu & Chunmei Fan & Shanshan Zhang & Qianjin Liao & Ming Zhou & Bo Xiang & Fuyan Wang & Ming Tan & Zhaoji, 2024. "Human papillomavirus-encoded circular RNA circE7 promotes immune evasion in head and neck squamous cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Wenjun Wang & Junyang Tan & Xiaomin Liu & Wenqi Guo & Mengmeng Li & Xinjie Liu & Yanyan Liu & Wenyu Dai & Liubing Hu & Yimin Wang & Qiuxia Lu & Wen Xing Lee & Hong-Wen Tang & Qinghua Zhou, 2023. "Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    4. Alexander S Leonard & Sebastian E Ahnert, 2019. "Evolution of interface binding strengths in simplified model of protein quaternary structure," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-15, June.
    5. Christin Pohl & Gregory Effantin & Eaazhisai Kandiah & Sebastian Meier & Guanghong Zeng & Werner Streicher & Dorotea Raventos Segura & Per H. Mygind & Dorthe Sandvang & Line Anker Nielsen & Günther H., 2022. "pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Shi Feng & Cody Aplin & Thuy-Tien T. Nguyen & Shawn K. Milano & Richard A. Cerione, 2024. "Filament formation drives catalysis by glutaminase enzymes important in cancer progression," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Johannes Venezian & Hagit Bar-Yosef & Hila Ben-Arie Zilberman & Noam Cohen & Oded Kleifeld & Juan Fernandez-Recio & Fabian Glaser & Ayala Shiber, 2024. "Diverging co-translational protein complex assembly pathways are governed by interface energy distribution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Lauren Ann Metskas & Davi Ortega & Luke M. Oltrogge & Cecilia Blikstad & Derik R. Lovejoy & Thomas G. Laughlin & David F. Savage & Grant J. Jensen, 2022. "Rubisco forms a lattice inside alpha-carboxysomes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51808-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.