IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51774-z.html
   My bibliography  Save this article

Asymmetric dihydroboration of allenes enabled by ligand relay catalysis

Author

Listed:
  • Yaqin Lei

    (Hunan University)

  • Yu Kong

    (Hunan University)

  • Zi-Qiang Rong

    (Northwestern Polytechnical University (NPU))

  • Wanxiang Zhao

    (Hunan University)

Abstract

Catalytic asymmetric hydroboration of unsaturated bonds has been recognized as the most straightforward method for the construction of chiral organoboron compounds. Although catalytic asymmetric hydroboration of alkenes has been well-developed, enantioselective hydroboration of allenes still remains rare probably due to the challenges in controlling the enantio-, stereo-, and regioselectivity. Additionally, the hydroboration products might go through over-borohydride, making the catalytic asymmetric dihydroboration of allenes challenging. Here, we report a cobalt-catalyzed asymmetric dihydroboration of allenes using a ligand relay strategy with two simple ligands. This protocol shows excellent enantio-, stereo-, and regioselectivity with positive functional group compatibilities in the construction of chiral 1,4-diboronate products. The applications of this reaction are demonstrated by various product derivatizations, gram-scale reactions, and the preparation of artigenin analogues. Mechanistic studies indicate that the achiral ligand controls the first hydroboration of allenes, and the chiral oxazoline iminopyridine ligand is responsible for the subsequent isomerization and asymmetric hydroboration.

Suggested Citation

  • Yaqin Lei & Yu Kong & Zi-Qiang Rong & Wanxiang Zhao, 2024. "Asymmetric dihydroboration of allenes enabled by ligand relay catalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51774-z
    DOI: 10.1038/s41467-024-51774-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51774-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51774-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scott N. Mlynarski & Christopher H. Schuster & James P. Morken, 2014. "Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling," Nature, Nature, vol. 505(7483), pages 386-390, January.
    2. Scott N. Mlynarski & Christopher H. Schuster & James P. Morken, 2014. "Erratum: Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling," Nature, Nature, vol. 506(7489), pages 516-516, February.
    3. Shengnan Jin & Jinxia Li & Kang Liu & Wei-Yi Ding & Shuai Wang & Xiujuan Huang & Xue Li & Peiyuan Yu & Qiuling Song, 2022. "Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yufeng Sun & Jun Guo & Xuzhong Shen & Zhan Lu, 2022. "Ligand relay catalysis for cobalt-catalyzed sequential hydrosilylation and hydrohydrazidation of terminal alkynes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Caiyou Chen & Jonas C. Peters & Gregory C. Fu, 2021. "Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity," Nature, Nature, vol. 596(7871), pages 250-256, August.
    6. Yuli He & Jiawei Ma & Huayue Song & Yao Zhang & Yong Liang & You Wang & Shaolin Zhu, 2022. "Regio- and enantioselective remote hydroarylation using a ligand-relay strategy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daning Zeng & Zihao Liu & Guoce Huang & You Wang & Shaolin Zhu, 2024. "Regio-, stereo-, and enantioselective ipso- and migratory defluorinative olefin cross-coupling to access highly functionalized monofluoroalkenes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Shanglin Chen & Ya-Nan Wang & Jinhui Xie & Wangyang Li & Mingxing Ye & Xingxing Ma & Kai Yang & Shijun Li & Yu Lan & Qiuling Song, 2024. "Chemo-, regio- and stereoselective access to polysubstituted 1,3-dienes via Nickel-catalyzed four-component reactions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jinglan Wen & Yahao Huang & Yu Zhang & Hansjörg Grützmacher & Peng Hu, 2024. "Cobalt catalyzed practical hydroboration of terminal alkynes with time-dependent stereoselectivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Liang Ge & Chi Zhang & Chengkai Pan & Ding-Xing Wang & Dong-Ying Liu & Zhi-Qiang Li & Pingkang Shen & Lifang Tian & Chao Feng, 2022. "Photoredox-catalyzed C–C bond cleavage of cyclopropanes for the formation of C(sp3)–heteroatom bonds," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Xiaotao Zhu & Wujun Jian & Meirong Huang & Daliang Li & Yajun Li & Xinhao Zhang & Hongli Bao, 2021. "Asymmetric radical carboesterification of dienes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Li-Juan Liu & Mao-Mao Zhang & Ziqi Deng & Liang-Liang Yan & Yang Lin & David Lee Phillips & Vivian Wing-Wah Yam & Jian He, 2024. "NIR-II emissive anionic copper nanoclusters with intrinsic photoredox activity in single-electron transfer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Heng Wang & Xiaofeng Jie & Qinglei Chong & Fanke Meng, 2024. "Pathway-divergent coupling of 1,3-enynes with acrylates through cascade cobalt catalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Lei Dai & Xueting Zhou & Jiami Guo & Xuan Dai & Qingqin Huang & Yixin Lu, 2023. "Diastereo- and atroposelective synthesis of N-arylpyrroles enabled by light-induced phosphoric acid catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Xuan-Ge Zhang & Zhi-Chun Yang & Jia-Bin Pan & Xiao-Hua Liu & Qi-Lin Zhou, 2024. "Enantioselective synthesis of chiral amides by carbene insertion into amide N–H bond," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Zhonghe Wang & Yang Tang & Songtao Liu & Liang Zhao & Huaqing Li & Cheng He & Chunying Duan, 2024. "Energy transfer-mediated multiphoton synergistic excitation for selective C(sp3)–H functionalization with coordination polymer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51774-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.