IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51670-6.html
   My bibliography  Save this article

Observation of monopole topological mode

Author

Listed:
  • Hengbin Cheng

    (Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics
    University of Chinese Academy of Sciences)

  • Jingyu Yang

    (Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics
    University of Chinese Academy of Sciences)

  • Zhong Wang

    (Tsinghua University)

  • Ling Lu

    (Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics)

Abstract

Among the many far-reaching consequences of the potential existence of a magnetic monopole, it induces a topological zero mode in the Dirac equation, which was derived by Jackiw and Rebbi 48 years ago and has been elusive ever since. Here, we show that the monopole and multi-monopole solutions can be constructed in the band theory by gapping the three-dimensional Dirac points in hedgehog mass configurations. We then experimentally demonstrate such a monopole bound state in an optimized Dirac acoustic crystal structurally modulated in full solid angles. The monopole mode exhibits the optimal scaling behavior — whose modal spacing is inversely proportional to the cubic root of the modal volume. This work completes the kink-vortex-monopole zero-mode trilogy and paves the way for exploring higher-dimensional bulk-topological-defect correspondence.

Suggested Citation

  • Hengbin Cheng & Jingyu Yang & Zhong Wang & Ling Lu, 2024. "Observation of monopole topological mode," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51670-6
    DOI: 10.1038/s41467-024-51670-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51670-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51670-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongming Gu & He Gao & Haoran Xue & Jensen Li & Zhongqing Su & Jie Zhu, 2022. "Transient non-Hermitian skin effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Haoran Xue & Z. Y. Chen & Zheyu Cheng & J. X. Dai & Yang Long & Y. X. Zhao & Baile Zhang, 2023. "Stiefel-Whitney topological charges in a three-dimensional acoustic nodal-line crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Z. Y. Chen & Zheng Zhang & Shengyuan A. Yang & Y. X. Zhao, 2023. "Classification of time-reversal-invariant crystals with gauge structures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Jingwen Ma & Ding Jia & Li Zhang & Yi-jun Guan & Yong Ge & Hong-xiang Sun & Shou-qi Yuan & Hongsheng Chen & Yihao Yang & Xiang Zhang, 2024. "Observation of vortex-string chiral modes in metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Biye Xie & Renwen Huang & Shiyin Jia & Zemeng Lin & Junzheng Hu & Yao Jiang & Shaojie Ma & Peng Zhan & Minghui Lu & Zhenlin Wang & Yanfeng Chen & Shuang Zhang, 2023. "Bulk-local-density-of-state correspondence in topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51670-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.