Author
Listed:
- Feng Ma
(Paichai University
Hunan University of Arts and Science)
- Sang-il Choi
(Paichai University)
- Dooyong Lee
(Kyungpook National University)
- Sung Bae Jeon
(Paichai University)
- Sungkyun Park
(Pusan National University)
- Sung-Pyo Cho
(Seoul National University
Advanced Institute of Convergence Technology)
- Jin-Hyo Boo
(Sungkyunkwan University)
- Sungsoo Kim
(Paichai University)
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a successfully commercialized polymeric semiconductor material, has potential as a transparent electrode in flexible electronic devices, yet has insufficient conductivity. We present the synthesis, properties, and directed crystallization of the PEDOT:dodecyl sulfate (PEDOT:DS) film. Iron(III) dodecyl sulfate (Fe(DS)3) multi-lamellar vesicles (MLVs), a new growth template, are used to synthesize and direct the growth of the PEDOT:DS film via vapor-phase polymerization of 3,4-ethylenedioxythiophene to form huge PEDOT:DS co-crystal domains within the MLV superstructure. The polycrystalline film has metallic conductivity (avg. ~1.0 × 104 S cm−1), is highly transparent and mechanically durable yet flexible, and suitable for next-generation flexible electronics. These noteworthy properties are conferred by the MLV lamellar superstructure of Fe(DS)3, a selective oxidant and an efficient in situ dopant that enhances the film hydrophobicity and durability. Sophisticated MLV-type oxidants are foreseen to enable the synthesis of more conductive, transparent, robust, flexible, and water-stable polymer electrode materials in future.
Suggested Citation
Feng Ma & Sang-il Choi & Dooyong Lee & Sung Bae Jeon & Sungkyun Park & Sung-Pyo Cho & Jin-Hyo Boo & Sungsoo Kim, 2024.
"Directed crystallization of a poly(3,4-ethylenedioxythiophene) film by an iron(III) dodecyl sulfate lamellar superstructure,"
Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51621-1
DOI: 10.1038/s41467-024-51621-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51621-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.