IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51529-w.html
   My bibliography  Save this article

Cell-free DNA from germline TP53 mutation carriers reflect cancer-like fragmentation patterns

Author

Listed:
  • Derek Wong

    (University Health Network)

  • Maha Tageldein

    (University Health Network
    University of Toronto)

  • Ping Luo

    (University Health Network)

  • Erik Ensminger

    (University Health Network
    University of Toronto)

  • Jeffrey Bruce

    (University Health Network)

  • Leslie Oldfield

    (University Health Network)

  • Haifan Gong

    (University of Toronto)

  • Nicholas William Fischer

    (University of Toronto)

  • Brianne Laverty

    (University of Toronto
    University of Toronto)

  • Vallijah Subasri

    (University of Toronto
    University of Toronto
    Toronto)

  • Scott Davidson

    (The Hospital for Sick Children Research Institute
    University of Toronto)

  • Reem Khan

    (The Hospital for Sick Children Research Institute
    University of Toronto)

  • Anita Villani

    (The Hospital for Sick Children Research Institute
    The Hospital for Sick Children)

  • Adam Shlien

    (The Hospital for Sick Children Research Institute
    University of Toronto)

  • Raymond H. Kim

    (University Health Network
    University of Toronto
    Toronto General Hospital Research Institute
    Ontario Institute of Cancer Research)

  • David Malkin

    (University of Toronto
    University of Toronto
    Toronto General Hospital Research Institute)

  • Trevor J. Pugh

    (University Health Network
    University of Toronto
    Ontario Institute of Cancer Research)

Abstract

Germline pathogenic TP53 variants predispose individuals to a high lifetime risk of developing multiple cancers and are the hallmark feature of Li-Fraumeni syndrome (LFS). Our group has previously shown that LFS patients harbor shorter plasma cell-free DNA fragmentation; independent of cancer status. To understand the functional underpinning of cfDNA fragmentation in LFS, we conducted a fragmentomic analysis of 199 cfDNA samples from 82 TP53 mutation carriers and 30 healthy TP53-wildtype controls. We find that LFS individuals exhibit an increased prevalence of A/T nucleotides at fragment ends, dysregulated nucleosome positioning at p53 binding sites, and loci-specific changes in chromatin accessibility at development-associated transcription factor binding sites and at cancer-associated open chromatin regions. Machine learning classification resulted in robust differentiation between TP53 mutant versus wildtype cfDNA samples (AUC-ROC = 0.710–1.000) and intra-patient longitudinal analysis of ctDNA fragmentation signal enabled early cancer detection. These results suggest that cfDNA fragmentation may be a useful diagnostic tool in LFS patients and provides an important baseline for cancer early detection.

Suggested Citation

  • Derek Wong & Maha Tageldein & Ping Luo & Erik Ensminger & Jeffrey Bruce & Leslie Oldfield & Haifan Gong & Nicholas William Fischer & Brianne Laverty & Vallijah Subasri & Scott Davidson & Reem Khan & A, 2024. "Cell-free DNA from germline TP53 mutation carriers reflect cancer-like fragmentation patterns," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51529-w
    DOI: 10.1038/s41467-024-51529-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51529-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51529-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wouter Meuleman & Alexander Muratov & Eric Rynes & Jessica Halow & Kristen Lee & Daniel Bates & Morgan Diegel & Douglas Dunn & Fidencio Neri & Athanasios Teodosiadis & Alex Reynolds & Eric Haugen & Je, 2020. "Index and biological spectrum of human DNase I hypersensitive sites," Nature, Nature, vol. 584(7820), pages 244-251, August.
    2. Cen Zhang & Juan Liu & Yingjian Liang & Rui Wu & Yuhan Zhao & Xuehui Hong & Meihua Lin & Haiyang Yu & Lianxin Liu & Arnold J. Levine & Wenwei Hu & Zhaohui Feng, 2013. "Tumour-associated mutant p53 drives the Warburg effect," Nature Communications, Nature, vol. 4(1), pages 1-15, December.
    3. Peter Ulz & Samantha Perakis & Qing Zhou & Tina Moser & Jelena Belic & Isaac Lazzeri & Albert Wölfler & Armin Zebisch & Armin Gerger & Gunda Pristauz & Edgar Petru & Brandon White & Charles E. S. Robe, 2019. "Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Jiajun Zhu & Morgan A. Sammons & Greg Donahue & Zhixun Dou & Masoud Vedadi & Matthäus Getlik & Dalia Barsyte-Lovejoy & Rima Al-awar & Bryson W. Katona & Ali Shilatifard & Jing Huang & Xianxin Hua & Ch, 2015. "Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth," Nature, Nature, vol. 525(7568), pages 206-211, September.
    5. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    6. Jane Grimwood & Laurie A. Gordon & Anne Olsen & Astrid Terry & Jeremy Schmutz & Jane Lamerdin & Uffe Hellsten & David Goodstein & Olivier Couronne & Mary Tran-Gyamfi & Andrea Aerts & Michael Altherr &, 2004. "The DNA sequence and biology of human chromosome 19," Nature, Nature, vol. 428(6982), pages 529-535, April.
    7. Dimitrios Mathios & Jakob Sidenius Johansen & Stephen Cristiano & Jamie E. Medina & Jillian Phallen & Klaus R. Larsen & Daniel C. Bruhm & Noushin Niknafs & Leonardo Ferreira & Vilmos Adleff & Jia Yuee, 2021. "Detection and characterization of lung cancer using cell-free DNA fragmentomes," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Stephen Cristiano & Alessandro Leal & Jillian Phallen & Jacob Fiksel & Vilmos Adleff & Daniel C. Bruhm & Sarah Østrup Jensen & Jamie E. Medina & Carolyn Hruban & James R. White & Doreen N. Palsgrove &, 2019. "Genome-wide cell-free DNA fragmentation in patients with cancer," Nature, Nature, vol. 570(7761), pages 385-389, June.
    9. Anna-Lisa Doebley & Minjeong Ko & Hanna Liao & A. Eden Cruikshank & Katheryn Santos & Caroline Kikawa & Joseph B. Hiatt & Robert D. Patton & Navonil De Sarkar & Katharine A. Collier & Anna C. H. Hoge , 2022. "A framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna-Lisa Doebley & Minjeong Ko & Hanna Liao & A. Eden Cruikshank & Katheryn Santos & Caroline Kikawa & Joseph B. Hiatt & Robert D. Patton & Navonil De Sarkar & Katharine A. Collier & Anna C. H. Hoge , 2022. "A framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Kate E. Stanley & Tatjana Jatsenko & Stefania Tuveri & Dhanya Sudhakaran & Lore Lannoo & Kristel Calsteren & Marie Borre & Ilse Parijs & Leen Coillie & Kris Bogaert & Rodrigo Almeida Toledo & Liesbeth, 2024. "Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Michaël Noë & Dimitrios Mathios & Akshaya V. Annapragada & Shashikant Koul & Zacharia H. Foda & Jamie E. Medina & Stephen Cristiano & Christopher Cherry & Daniel C. Bruhm & Noushin Niknafs & Vilmos Ad, 2024. "DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jun Wang & Jinyong Huang & Yunlong Hu & Qianwen Guo & Shasha Zhang & Jinglin Tian & Yanqin Niu & Ling Ji & Yuzhong Xu & Peijun Tang & Yaqin He & Yuna Wang & Shuya Zhang & Hao Yang & Kang Kang & Xinchu, 2024. "Terminal modifications independent cell-free RNA sequencing enables sensitive early cancer detection and classification," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. An Xu & Mo Liu & Mo-Fan Huang & Yang Zhang & Ruifeng Hu & Julian A. Gingold & Ying Liu & Dandan Zhu & Chian-Shiu Chien & Wei-Chen Wang & Zian Liao & Fei Yuan & Chih-Wei Hsu & Jian Tu & Yao Yu & Taylor, 2023. "Rewired m6A epitranscriptomic networks link mutant p53 to neoplastic transformation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Yunyun An & Xin Zhao & Ziteng Zhang & Zhaohua Xia & Mengqi Yang & Li Ma & Yu Zhao & Gang Xu & Shunda Du & Xiang’an Wu & Shuowen Zhang & Xin Hong & Xin Jin & Kun Sun, 2023. "DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Xu Hua & Hui Zhou & Hui-Chen Wu & Julia Furnari & Corina P. Kotidis & Raul Rabadan & Jeanine M. Genkinger & Jeffrey N. Bruce & Peter Canoll & Regina M. Santella & Zhiguo Zhang, 2024. "Tumor detection by analysis of both symmetric- and hemi-methylation of plasma cell-free DNA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Fenglong Bie & Zhijie Wang & Yulong Li & Wei Guo & Yuanyuan Hong & Tiancheng Han & Fang Lv & Shunli Yang & Suxing Li & Xi Li & Peiyao Nie & Shun Xu & Ruochuan Zang & Moyan Zhang & Peng Song & Feiyue F, 2023. "Multimodal analysis of cell-free DNA whole-methylome sequencing for cancer detection and localization," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    10. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    13. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    14. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    15. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    16. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    17. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    18. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    20. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51529-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.