Author
Listed:
- Kenshiro Yamada
(Meguro-ku)
- Akari Mukaimine
(Wako-shi)
- Akiko Nakamura
(Wako-shi)
- Yuriko Kusakari
(Wako-shi)
- Ambara R. Pradipta
(Meguro-ku)
- Tsung-Che Chang
(Meguro-ku
Wako-shi)
- Katsunori Tanaka
(Meguro-ku
Wako-shi)
Abstract
Cell surface glycans form various “glycan patterns” consisting of different types of glycan molecules, thus enabling strong and selective cell-to-cell recognition. We previously conjugated different N-glycans to human serum albumin to construct glycoalbumins mimicking natural glycan patterns that could selectively recognize target cells or control excretion pathways in mice. Here, we develop an innovative glycoalbumin capable of undergoing transformation and remodeling of its glycan pattern in vivo, which induces its translocation from the initial target to a second one. Replacing α(2,3)-sialylated N-glycans on glycoalbumin with galactosylated glycans induces the translocation of the glycoalbumin from blood or tumors to the intestine in mice. Such “in vivo glycan pattern remodeling” strategy can be used as a drug delivery system to promote excretion of a drug or medical radionuclide from the tumor after treatment, thereby preventing prolonged exposure leading to adverse effects. Alternatively, this study provides a potential strategy for using a single glycoalbumin for the simultaneous treatment of multiple diseases in a patient.
Suggested Citation
Kenshiro Yamada & Akari Mukaimine & Akiko Nakamura & Yuriko Kusakari & Ambara R. Pradipta & Tsung-Che Chang & Katsunori Tanaka, 2024.
"Chemistry-driven translocation of glycosylated proteins in mice,"
Nature Communications, Nature, vol. 15(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51342-5
DOI: 10.1038/s41467-024-51342-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51342-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.