IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51014-4.html
   My bibliography  Save this article

Motion blur microscopy: in vitro imaging of cell adhesion dynamics in whole blood flow

Author

Listed:
  • Utku Goreke

    (Case Western Reserve University)

  • Ayesha Gonzales

    (Case Western Reserve University)

  • Brandon Shipley

    (Case Western Reserve University)

  • Madeleine Tincher

    (Case Western Reserve University)

  • Oshin Sharma

    (Case Western Reserve University)

  • William J. Wulftange

    (Case Western Reserve University)

  • Yuncheng Man

    (Case Western Reserve University)

  • Ran An

    (Case Western Reserve University)

  • Michael Hinczewski

    (Case Western Reserve University)

  • Umut A. Gurkan

    (Case Western Reserve University
    Case Western Reserve University)

Abstract

Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task but typically require diluting the blood with a buffer to allow for transmission of light. However, whole blood provides crucial signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We can reliably image cell interactions in microfluidic channels during whole blood flow by motion blur microscopy (MBM) in vitro and automate image analysis using machine learning. MBM provides a low cost, easy to implement alternative to intravital microscopy, for rapid data generation where understanding cell interactions, adhesion, and motility is crucial. MBM is generalizable to studies of various diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics.

Suggested Citation

  • Utku Goreke & Ayesha Gonzales & Brandon Shipley & Madeleine Tincher & Oshin Sharma & William J. Wulftange & Yuncheng Man & Ran An & Michael Hinczewski & Umut A. Gurkan, 2024. "Motion blur microscopy: in vitro imaging of cell adhesion dynamics in whole blood flow," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51014-4
    DOI: 10.1038/s41467-024-51014-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51014-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51014-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinsung Yang & Simon J. L. Petitjean & Melanie Koehler & Qingrong Zhang & Andra C. Dumitru & Wenzhang Chen & Sylvie Derclaye & Stéphane P. Vincent & Patrice Soumillion & David Alsteens, 2020. "Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Rong & Achi Haider & Troels E. Jeppesen & Lee Josephson & Steven H. Liang, 2023. "Radiochemistry for positron emission tomography," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Rong Zhu & Daniel Canena & Mateusz Sikora & Miriam Klausberger & Hannah Seferovic & Ahmad Reza Mehdipour & Lisa Hain & Elisabeth Laurent & Vanessa Monteil & Gerald Wirnsberger & Ralph Wieneke & Robert, 2022. "Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Alexander J. Pak & Alvin Yu & Zunlong Ke & John A. G. Briggs & Gregory A. Voth, 2022. "Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Zhenzhen Wang & Shiqi Hu & Kristen D. Popowski & Shuo Liu & Dashuai Zhu & Xuan Mei & Junlang Li & Yilan Hu & Phuong-Uyen C. Dinh & Xiaojie Wang & Ke Cheng, 2024. "Inhalation of ACE2-expressing lung exosomes provides prophylactic protection against SARS-CoV-2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Andreia L. Pinto & Ranjit K. Rai & Jonathan C. Brown & Paul Griffin & James R. Edgar & Anand Shah & Aran Singanayagam & Claire Hogg & Wendy S. Barclay & Clare E. Futter & Thomas Burgoyne, 2022. "Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Melanie Koehler & Ankita Ray & Rodrigo A. Moreira & Blinera Juniku & Adolfo B. Poma & David Alsteens, 2021. "Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51014-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.