IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50922-9.html
   My bibliography  Save this article

Intramolecular chalcogen bonding activated SuFEx click chemistry for efficient organic-inorganic linking

Author

Listed:
  • Minlong Wang

    (China Agricultural University)

  • Jiaman Hou

    (China Agricultural University)

  • Hainam Do

    (University of Nottingham Ningbo China)

  • Chao Wang

    (China Agricultural University)

  • Xiaohe Zhang

    (China Agricultural University)

  • Ying Du

    (China Agricultural University)

  • Qixin Dong

    (China Agricultural University)

  • Lijun Wang

    (China Agricultural University)

  • Ke Ni

    (China Agricultural University)

  • Fazheng Ren

    (China Agricultural University)

  • Jie An

    (China Agricultural University)

Abstract

SuFEx click chemistry demonstrates remarkable molecular assembly capabilities. However, the effective utilization of alkyl sulfonyl fluoride hubs in SuFEx chemistry, particularly in reactions with alcohols and primary amines, presents considerable challenges. This study pioneers an intramolecular chalcogen bonding activated SuFEx (S-SuFEx) click chemistry employing alkyl sulfonyl fluorides with γ-S as the activating group. The ChB-activated alkyl sulfonyl fluorides can react smoothly with phenols, alcohols, and amines, exhibiting enhanced reactivity compared to SO2F2. Excellent yields have been achieved with all 75 tested substrates. Pioneering the application of S-SuFEx chemistry, we highlight its immense potential in organic-inorganic linking, considering the critical role of interfacial covalent bonding in material fabrication. The S-SuFEx hub 1c, incorporating a trialkoxy silane group has been specifically designed and synthesized for organic-inorganic linking. In a simple step, 1c efficiently anchors various organic compounds onto surfaces of inorganic materials, forming functionalized surfaces with properties such as antibacterial activity, hydrophobicity, and fluorescence.

Suggested Citation

  • Minlong Wang & Jiaman Hou & Hainam Do & Chao Wang & Xiaohe Zhang & Ying Du & Qixin Dong & Lijun Wang & Ke Ni & Fazheng Ren & Jie An, 2024. "Intramolecular chalcogen bonding activated SuFEx click chemistry for efficient organic-inorganic linking," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50922-9
    DOI: 10.1038/s41467-024-50922-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50922-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50922-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianjian Liu & Mali Zhou & Rui Deng & Pengcheng Zheng & Yonggui Robin Chi, 2022. "Chalcogen bond-guided conformational isomerization enables catalytic dynamic kinetic resolution of sulfoxides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Genyi Meng & Taijie Guo & Tiancheng Ma & Jiong Zhang & Yucheng Shen & Karl Barry Sharpless & Jiajia Dong, 2019. "Modular click chemistry libraries for functional screens using a diazotizing reagent," Nature, Nature, vol. 574(7776), pages 86-89, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuki Yamamoto & Toyotaka Sato & Aili Hao & Kenta Asao & Rintaro Kaguchi & Shintaro Kusaka & Radhakrishnam Raju Ruddarraju & Daichi Kazamori & Kiki Seo & Satoshi Takahashi & Motohiro Horiuchi & Shin-, 2024. "Development of a natural product optimization strategy for inhibitors against MraY, a promising antibacterial target," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Jian Rong & Ahmed Haider & Troels E. Jeppesen & Lee Josephson & Steven H. Liang, 2023. "Radiochemistry for positron emission tomography," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    3. Peng Wang & Honghai Zhang & Xingliang Nie & Tianxiao Xu & Saihu Liao, 2022. "Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Semih Sevim & Roger Sanchis-Gual & Carlos Franco & Albert C. Aragonès & Nadim Darwish & Donghoon Kim & Rosaria Anna Picca & Bradley J. Nelson & Eliseo Ruiz & Salvador Pané & Ismael Díez-Pérez & Josep , 2024. "Electrostatic catalysis of a click reaction in a microfluidic cell," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Meihui Liu & Xiao Han & Hao Chen & Qian Peng & Hui Huang, 2023. "A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Junkai Guo & Xiu Wang & Chuanfa Ni & Xiaolong Wan & Jinbo Hu, 2022. "SulfoxFluor-enabled deoxyazidation of alcohols with NaN3," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50922-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.