IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50878-w.html
   My bibliography  Save this article

Heterozygous de novo dominant negative mutation of REXO2 results in interferonopathy

Author

Listed:
  • Elina Idiiatullina

    (Guangzhou Medical University
    Bashkir State Medical University
    Rutgers New Jersey Medical School)

  • Mahmoud Al-Azab

    (Guangzhou Medical University
    University of Science and Technology)

  • Meng Lin

    (Guangzhou Medical University)

  • Katja Hrovat-Schaale

    (Bashkir State Medical University
    University of Science and Technology)

  • Ziyang Liu

    (Guangzhou Medical University)

  • Xiaotian Li

    (Guangzhou Medical University)

  • Caiqin Guo

    (Guangzhou Medical University)

  • Xixi Chen

    (Guangzhou Medical University)

  • Yaoying Li

    (Sun Yat-sen University Cancer Center)

  • Song Gao

    (Sun Yat-sen University Cancer Center)

  • Jun Cui

    (Sun Yat-sen University)

  • Wenhao Zhou

    (Guangzhou Medical University)

  • Li Liu

    (Guangzhou Medical University)

  • Yuxia Zhang

    (Guangzhou Medical University)

  • Seth L. Masters

    (Guangzhou Medical University
    The Walter and Eliza Hall Institute of Medical Research
    The University of Melbourne
    Hudson Institute of Medical Research)

Abstract

Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.

Suggested Citation

  • Elina Idiiatullina & Mahmoud Al-Azab & Meng Lin & Katja Hrovat-Schaale & Ziyang Liu & Xiaotian Li & Caiqin Guo & Xixi Chen & Yaoying Li & Song Gao & Jun Cui & Wenhao Zhou & Li Liu & Yuxia Zhang & Seth, 2024. "Heterozygous de novo dominant negative mutation of REXO2 results in interferonopathy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50878-w
    DOI: 10.1038/s41467-024-50878-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50878-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50878-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ashish Dhir & Somdutta Dhir & Lukasz S. Borowski & Laura Jimenez & Michael Teitell & Agnès Rötig & Yanick J. Crow & Gillian I. Rice & Darragh Duffy & Christelle Tamby & Takayuki Nojima & Arnold Munnic, 2018. "Mitochondrial double-stranded RNA triggers antiviral signalling in humans," Nature, Nature, vol. 560(7717), pages 238-242, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shane T. Killarney & Rachel Washart & Ryan S. Soderquist & Jacob P. Hoj & Jamie Lebhar & Kevin H. Lin & Kris C. Wood, 2023. "Executioner caspases restrict mitochondrial RNA-driven Type I IFN induction during chemotherapy-induced apoptosis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yue Wang & Dhamotharan Pattarayan & Haozhe Huang & Yueshan Zhao & Sihan Li & Yifei Wang & Min Zhang & Song Li & Da Yang, 2024. "Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Abhishek Aich & Angela Boshnakovska & Steffen Witte & Tanja Gall & Kerstin Unthan-Fechner & Roya Yousefi & Arpita Chowdhury & Drishan Dahal & Aditi Methi & Svenja Kaufmann & Ivan Silbern & Jan Prochaz, 2024. "Defective mitochondrial COX1 translation due to loss of COX14 function triggers ROS-induced inflammation in mouse liver," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Yujie Zhu & Mingchao Zhang & Weiran Wang & Shuang Qu & Minghui Liu & Weiwei Rong & Wenwen Yang & Hongwei Liang & Caihong Zeng & Xiaodong Zhu & Limin Li & Zhihong Liu & Ke Zen, 2023. "Polynucleotide phosphorylase protects against renal tubular injury via blocking mt-dsRNA-PKR-eIF2α axis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Vanessa López-Polo & Mate Maus & Emmanouil Zacharioudakis & Miguel Lafarga & Camille Stephan-Otto Attolini & Francisco D. M. Marques & Marta Kovatcheva & Evripidis Gavathiotis & Manuel Serrano, 2024. "Release of mitochondrial dsRNA into the cytosol is a key driver of the inflammatory phenotype of senescent cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50878-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.