IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50822-y.html
   My bibliography  Save this article

Combinatorial regulatory states define cell fate diversity during embryogenesis

Author

Listed:
  • Jonathan E. Valencia

    (California Institute of Technology)

  • Isabelle S. Peter

    (California Institute of Technology)

Abstract

Cell fate specification occurs along invariant species-specific trajectories that define the animal body plan. This process is controlled by gene regulatory networks that regulate the expression of the limited set of transcription factors encoded in animal genomes. Here we globally assess the spatial expression of ~90% of expressed transcription factors during sea urchin development from embryo to larva to determine the activity of gene regulatory networks and their regulatory states during cell fate specification. We show that >200 embryonically expressed transcription factors together define >70 cell fates that recapitulate the morphological and functional organization of this organism. Most cell fate-specific regulatory states consist of ~15–40 transcription factors with similarity particularly among functionally related cell types regardless of developmental origin. Temporally, regulatory states change continuously during development, indicating that progressive changes in regulatory circuit activity determine cell fate specification. We conclude that the combinatorial expression of transcription factors provides molecular definitions that suffice for the unique specification of cell states in time and space during embryogenesis.

Suggested Citation

  • Jonathan E. Valencia & Isabelle S. Peter, 2024. "Combinatorial regulatory states define cell fate diversity during embryogenesis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50822-y
    DOI: 10.1038/s41467-024-50822-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50822-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50822-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Isabelle S. Peter & Eric H. Davidson, 2011. "A gene regulatory network controlling the embryonic specification of endoderm," Nature, Nature, vol. 474(7353), pages 635-639, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50822-y. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.