IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50700-7.html
   My bibliography  Save this article

Coming of age for Microbiome gene breeding in plants

Author

Listed:
  • Tomislav Cernava

    (University of Southampton)

Abstract

The plant microbiota can complement host functioning, leading to improved growth and health under unfavorable conditions. Microbiome engineering could therefore become a transformative technique for crop production. Microbiome genes, abbreviated as M genes, provide valuable targets for shaping plant-associated microbial communities.

Suggested Citation

  • Tomislav Cernava, 2024. "Coming of age for Microbiome gene breeding in plants," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50700-7
    DOI: 10.1038/s41467-024-50700-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50700-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50700-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carmen Escudero-Martinez & Max Coulter & Rodrigo Alegria Terrazas & Alexandre Foito & Rumana Kapadia & Laura Pietrangelo & Mauro Maver & Rajiv Sharma & Alessio Aprile & Jenny Morris & Pete E. Hedley &, 2022. "Identifying plant genes shaping microbiota composition in the barley rhizosphere," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Pin Su & Houxiang Kang & Qianze Peng & Wisnu Adi Wicaksono & Gabriele Berg & Zhuoxin Liu & Jiejia Ma & Deyong Zhang & Tomislav Cernava & Yong Liu, 2024. "Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Ben O. Oyserman & Stalin Sarango Flores & Thom Griffioen & Xinya Pan & Elmar Wijk & Lotte Pronk & Wouter Lokhorst & Azkia Nurfikari & Joseph N. Paulson & Mercedeh Movassagh & Nejc Stopnisek & Anne Kup, 2022. "Disentangling the genetic basis of rhizosphere microbiome assembly in tomato," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Oluwaseyi Shorinola & Rose Marks & Peter Emmrich & Chris Jones & Damaris Odeny & Mark A. Chapman, 2024. "Integrative and inclusive genomics to promote the use of underutilised crops," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Su & Houxiang Kang & Qianze Peng & Wisnu Adi Wicaksono & Gabriele Berg & Zhuoxin Liu & Jiejia Ma & Deyong Zhang & Tomislav Cernava & Yong Liu, 2024. "Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Xin Zhou & Jinting Wang & Fang Liu & Junmin Liang & Peng Zhao & Clement K. M. Tsui & Lei Cai, 2022. "Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Xue Jin & Huiting Jia & Lingyi Ran & Fengzhi Wu & Junjie Liu & Klaus Schlaeppi & Francisco Dini-Andreote & Zhong Wei & Xingang Zhou, 2024. "Fusaric acid mediates the assembly of disease-suppressive rhizosphere microbiota via induced shifts in plant root exudates," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Carmen Escudero-Martinez & Max Coulter & Rodrigo Alegria Terrazas & Alexandre Foito & Rumana Kapadia & Laura Pietrangelo & Mauro Maver & Rajiv Sharma & Alessio Aprile & Jenny Morris & Pete E. Hedley &, 2022. "Identifying plant genes shaping microbiota composition in the barley rhizosphere," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50700-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.