IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50624-2.html
   My bibliography  Save this article

Water mediated redox-neutral cleavage of arylalkenes via photoredox catalysis

Author

Listed:
  • Ke Liao

    (Shenzhen Bay Laboratory)

  • Yuqi Fang

    (Shenzhen Bay Laboratory
    Kowloon)

  • Lei Sheng

    (Shenzhen Technology University)

  • Jiean Chen

    (Shenzhen Bay Laboratory)

  • Yong Huang

    (Kowloon)

Abstract

Cleavage of carbon-carbon bonds remains a challenging task in organic synthesis. Traditional methods for splitting Csp2=Csp2 bonds into two halves typically involve non-redox (metathesis) or oxidative (ozonolysis) mechanisms, limiting their synthetic potential. Disproportionative deconstruction of alkenes, which yields one reduced and one oxidized fragment, remains an unexplored area. In this study, we introduce a redox-neutral approach for deleting a Csp2 carbon unit from substituted arylalkenes, resulting in the formation of an arene (reduction) and a carbonyl product (oxidation). This transformation is believed to proceed through a mechanistic sequence involving visible-light-promoted anti-Markovnikov hydration, followed by photoredox cleavage of Csp3-Csp3 bond in the alcohol intermediate. A crucial consideration in this design is addressing the compatibility between the highly reactive oxy radical species in the latter step and the required hydrogen-atom-transfer (HAT) reagent for both steps. We found that ethyl thioglycolate serves as the optimal hydrogen-atom shuttle, offering remarkable chemoselectivity among multiple potential HAT events in this transformation. By using D2O, we successfully prepared dideuteromethylated (-CD2H) arenes with good heavy atom enrichment. This work presents a redox-neutral alternative for alkene deconstruction, with considerable potential in late-stage modification of complex molecules.

Suggested Citation

  • Ke Liao & Yuqi Fang & Lei Sheng & Jiean Chen & Yong Huang, 2024. "Water mediated redox-neutral cleavage of arylalkenes via photoredox catalysis," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50624-2
    DOI: 10.1038/s41467-024-50624-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50624-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50624-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50624-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.