IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50424-8.html
   My bibliography  Save this article

CryoET reveals actin filaments within platelet microtubules

Author

Listed:
  • Chisato Tsuji

    (University of Bristol)

  • Marston Bradshaw

    (University of Bristol)

  • Megan F. Allen

    (University of Bristol)

  • Molly L. Jackson

    (University of Bristol)

  • Judith Mantell

    (University of Bristol)

  • Ufuk Borucu

    (University of Bristol)

  • Alastair W. Poole

    (University of Bristol)

  • Paul Verkade

    (University of Bristol)

  • Ingeborg Hers

    (University of Bristol)

  • Danielle M. Paul

    (University of Bristol)

  • Mark P. Dodding

    (University of Bristol)

Abstract

Crosstalk between the actin and microtubule cytoskeletons is important for many cellular processes. Recent studies have shown that microtubules and F-actin can assemble to form a composite structure where F-actin occupies the microtubule lumen. Whether these cytoskeletal hybrids exist in physiological settings and how they are formed is unclear. Here, we show that the short-crossover Class I actin filament previously identified inside microtubules in human HAP1 cells is cofilin-bound F-actin. Lumenal F-actin can be reconstituted in vitro, but cofilin is not essential. Moreover, actin filaments with both cofilin-bound and canonical morphologies reside within human platelet microtubules under physiological conditions. We propose that stress placed upon the microtubule network during motor-driven microtubule looping and sliding may facilitate the incorporation of actin into microtubules.

Suggested Citation

  • Chisato Tsuji & Marston Bradshaw & Megan F. Allen & Molly L. Jackson & Judith Mantell & Ufuk Borucu & Alastair W. Poole & Paul Verkade & Ingeborg Hers & Danielle M. Paul & Mark P. Dodding, 2024. "CryoET reveals actin filaments within platelet microtubules," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50424-8
    DOI: 10.1038/s41467-024-50424-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50424-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50424-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Josie L. Ferreira & Vojtěch Pražák & Daven Vasishtan & Marc Siggel & Franziska Hentzschel & Annika M. Binder & Emma Pietsch & Jan Kosinski & Friedrich Frischknecht & Tim W. Gilberger & Kay Grünewald, 2023. "Variable microtubule architecture in the malaria parasite," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Matthew J. Reynolds & Carla Hachicho & Ayala G. Carl & Rui Gong & Gregory M. Alushin, 2022. "Bending forces and nucleotide state jointly regulate F-actin structure," Nature, Nature, vol. 611(7935), pages 380-386, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelli L. Hvorecny & Thomas E. Sladewski & Enrique M. Cruz & Justin M. Kollman & Aoife T. Heaslip, 2024. "Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Sai Shashank Chavali & Steven Z. Chou & Wenxiang Cao & Thomas D. Pollard & Enrique M. Cruz & Charles V. Sindelar, 2024. "Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Bing Liu & Cong Liu & Zhenkui Li & Wenjia Liu & Huiting Cui & Jing Yuan, 2024. "A subpellicular microtubule dynein transport machinery regulates ookinete morphogenesis for mosquito transmission of Plasmodium yoelii," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Qianqian Ma & Wahyu Surya & Danxia He & Hanmeng Yang & Xiao Han & Mui Hoon Nai & Chwee Teck Lim & Jaume Torres & Yansong Miao, 2024. "Spa2 remodels ADP-actin via molecular condensation under glucose starvation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50424-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.