IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50328-7.html
   My bibliography  Save this article

Water training initiates spatially regulated microstructures with competitive mechanics in hydroadaptive polymers

Author

Listed:
  • Wenbo Chen

    (University of Göttingen)

  • Caoxing Huang

    (University of Göttingen
    Nanjing Forestry University)

  • Philip Biehl

    (University of Göttingen)

  • Kai Zhang

    (University of Göttingen)

Abstract

The strategy using water as a medium for dynamic modulation of competitive plasticity and viscoelasticity provides a unique perspective to attain adaptive materials. We reveal sustainable polymers, herein cellulose phenoxyacetate as a typical example, with unusual water-responsive dual-mechanic functionalities addressed via a chronological water training strategy. The temporal significance of such water-responsive mechanical behaviors becomes apparent considering that a mere 3-minute exposure or a prolonged 3-hour exposure to water induced different types of mechano-responsiveness. This endows the materials with multiple recoverable shape-changes during water and air training, and consequently even underlines the switchability between the pre-loaded stable water shapes (> 20 months) and the sequentially fixed air shapes. Our discovery exploits the competitive mechanics initiated by water training, enabling polymers with spatially regulated microstructures via their inherently distinct mechanical properties. Insights into the molecular changes represents a considerable fundamental innovation, can be broadly applicable to a diverse array of hydroadaptive polymers.

Suggested Citation

  • Wenbo Chen & Caoxing Huang & Philip Biehl & Kai Zhang, 2024. "Water training initiates spatially regulated microstructures with competitive mechanics in hydroadaptive polymers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50328-7
    DOI: 10.1038/s41467-024-50328-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50328-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50328-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Fratzl & Friedrich G. Barth, 2009. "Biomaterial systems for mechanosensing and actuation," Nature, Nature, vol. 462(7272), pages 442-448, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khashayar Razghandi & Emad Yaghmaei, 2020. "Rethinking Filter: An Interdisciplinary Inquiry into Typology and Concept of Filter, Towards an Active Filter Model," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    2. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yuxiang Li & Zhihe Guo & Xuyang Zhao & Sheng Liu & Zhenmin Chen & Wen-Fei Dong & Shixiang Wang & Yun-Lu Sun & Xiang Wu, 2024. "An all-optical multidirectional mechano-sensor inspired by biologically mechano-sensitive hair sensilla," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Yeongju Jung & Kangkyu Kwon & Jinwoo Lee & Seung Hwan Ko, 2024. "Untethered soft actuators for soft standalone robotics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50328-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.