IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50303-2.html
   My bibliography  Save this article

Laboratory infrared spectra and fragmentation chemistry of sulfur allotropes

Author

Listed:
  • Piero Ferrari

    (FELIX Laboratory)

  • Giel Berden

    (FELIX Laboratory)

  • Britta Redlich

    (FELIX Laboratory)

  • Laurens B. F. M. Waters

    (Radboud University)

  • Joost M. Bakker

    (FELIX Laboratory)

Abstract

Sulfur is one of six life-essential elements, but its path from interstellar clouds to planets and their atmospheres is not well known. Astronomical observations in dense clouds have so far been able to trace only 1 percent of cosmic sulfur, in the form of gas phase molecules and volatile ices, with the missing sulfur expected to be locked in a currently unidentified form. The high sulfur abundances inferred in icy and rocky solar system bodies indicate that an efficient pathway must exist from volatile atomic sulfur in the diffuse interstellar medium to some form of refractory sulfur. One hypothesis is the formation of sulfur allotropes, particularly of the stable S8. However, experimental information about sulfur allotropes under astrochemically relevant conditions, needed to constrain their abundance, is lacking. Here, we report the laboratory far-infrared spectra of sulfur allotropes and examine their fragmentation pathways. The spectra, including that of cold, isolated S8 with three bands at 53.5, 41.3 and 21.1 µm, form a benchmark for computational modelling, which show a near-perfect match with the experiments. The experimental fragmentation pathways of sulfur allotropes, key information for astrochemical formation/destruction models, evidence a facile fragmentation of S8. These findings suggest the presence of sulfur allotropes distributions in interstellar space or in the atmosphere of planets, dependent on the environmental conditions.

Suggested Citation

  • Piero Ferrari & Giel Berden & Britta Redlich & Laurens B. F. M. Waters & Joost M. Bakker, 2024. "Laboratory infrared spectra and fragmentation chemistry of sulfur allotropes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50303-2
    DOI: 10.1038/s41467-024-50303-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50303-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50303-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shang-Min Tsai & Elspeth K. H. Lee & Diana Powell & Peter Gao & Xi Zhang & Julianne Moses & Eric Hébrard & Olivia Venot & Vivien Parmentier & Sean Jordan & Renyu Hu & Munazza K. Alam & Lili Alderson &, 2023. "Photochemically produced SO2 in the atmosphere of WASP-39b," Nature, Nature, vol. 617(7961), pages 483-487, May.
    2. Toshihiro Yoshimura & Yoshinori Takano & Hiroshi Naraoka & Toshiki Koga & Daisuke Araoka & Nanako O. Ogawa & Philippe Schmitt-Kopplin & Norbert Hertkorn & Yasuhiro Oba & Jason P. Dworkin & José C. Apo, 2023. "Chemical evolution of primordial salts and organic sulfur molecules in the asteroid 162173 Ryugu," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toshihiro Yoshimura & Daisuke Araoka & Hiroshi Naraoka & Saburo Sakai & Nanako O. Ogawa & Hisayoshi Yurimoto & Mayu Morita & Morihiko Onose & Tetsuya Yokoyama & Martin Bizzarro & Satoru Tanaka & Naohi, 2024. "Breunnerite grain and magnesium isotope chemistry reveal cation partitioning during aqueous alteration of asteroid Ryugu," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Mason McAnally & Jana Bocková & Ashanie Herath & Andrew M. Turner & Cornelia Meinert & Ralf I. Kaiser, 2024. "Abiotic formation of alkylsulfonic acids in interstellar analog ices and implications for their detection on Ryugu," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yoshinori Takano & Hiroshi Naraoka & Jason P. Dworkin & Toshiki Koga & Kazunori Sasaki & Hajime Sato & Yasuhiro Oba & Nanako O. Ogawa & Toshihiro Yoshimura & Kenji Hamase & Naohiko Ohkouchi & Eric T. , 2024. "Primordial aqueous alteration recorded in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Martin D. Suttle & Lorenz. F. Olbrich & Charlotte. L. Bays & Liza Riches, 2024. "Rapid heating rates define the volatile emission and regolith composition of (3200) Phaethon," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50303-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.