Author
Listed:
- Hang Luo
(Dalian University of Technology)
- Yupeng Yang
(Chinese Academy of Sciences Dalian)
- Yukang Fu
(Dalian University of Technology)
- Fangnian Yu
(Dalian University of Technology)
- Lei Gao
(Dalian University of Technology)
- Yunpeng Ma
(Dalian University of Technology)
- Yang Li
(Dalian University of Technology)
- Kaifeng Wu
(Chinese Academy of Sciences Dalian)
- Luqing Lin
(Dalian University of Technology)
Abstract
Direct reduction of unactivated alkyl halides for C(sp3)-N couplings under mild conditions presents a significant challenge in organic synthesis due to their low reduction potential. Herein, we introduce an in situ formed pyridyl-carbene-ligated copper (I) catalyst that is capable of abstracting halide atom and generating alkyl radicals for general C(sp3)-N couplings under visible light. Control experiments confirmed that the mono-pyridyl-carbene-ligated copper complex is the active species responsible for catalysis. Mechanistic investigations using transient absorption spectroscopy across multiple decades of timescales revealed ultrafast intersystem crossing (260 ps) of the photoexcited copper (I) complexes into their long-lived triplet excited states (>2 μs). The non-Stern-Volmer quenching dynamics of the triplets by unactivated alkyl halides suggests an association between copper (I) complexes and alkyl halides, thereby facilitating the abstraction of halide atoms via inner-sphere single electron transfer (SET), rather than outer-sphere SET, for the formation of alkyl radicals for subsequent cross couplings.
Suggested Citation
Hang Luo & Yupeng Yang & Yukang Fu & Fangnian Yu & Lei Gao & Yunpeng Ma & Yang Li & Kaifeng Wu & Luqing Lin, 2024.
"In situ copper photocatalysts triggering halide atom transfer of unactivated alkyl halides for general C(sp3)-N couplings,"
Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50082-w
DOI: 10.1038/s41467-024-50082-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50082-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.