IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49947-x.html
   My bibliography  Save this article

The unique allosteric property of crocodilian haemoglobin elucidated by cryo-EM

Author

Listed:
  • Katsuya Takahashi

    (Yokohama City University)

  • Yongchan Lee

    (Yokohama City University)

  • Angela Fago

    (Aarhus University)

  • Naim M. Bautista

    (University of Nebraska)

  • Jay F. Storz

    (University of Nebraska)

  • Akihiro Kawamoto

    (Osaka University)

  • Genji Kurisu

    (Osaka University)

  • Tomohiro Nishizawa

    (Yokohama City University)

  • Jeremy R. H. Tame

    (Yokohama City University)

Abstract

The principal effect controlling the oxygen affinity of vertebrate haemoglobins (Hbs) is the allosteric switch between R and T forms with relatively high and low oxygen affinity respectively. Uniquely among jawed vertebrates, crocodilians possess Hb that shows a profound drop in oxygen affinity in the presence of bicarbonate ions. This allows them to stay underwater for extended periods by consuming almost all the oxygen present in the blood-stream, as metabolism releases carbon dioxide, whose conversion to bicarbonate and hydrogen ions is catalysed by carbonic anhydrase. Despite the apparent universal utility of bicarbonate as an allosteric regulator of Hb, this property evolved only in crocodilians. We report here the molecular structures of both human and a crocodilian Hb in the deoxy and liganded states, solved by cryo-electron microscopy. We reveal the precise interactions between two bicarbonate ions and the crocodilian protein at symmetry-related sites found only in the T state. No other known effector of vertebrate Hbs binds anywhere near these sites.

Suggested Citation

  • Katsuya Takahashi & Yongchan Lee & Angela Fago & Naim M. Bautista & Jay F. Storz & Akihiro Kawamoto & Genji Kurisu & Tomohiro Nishizawa & Jeremy R. H. Tame, 2024. "The unique allosteric property of crocodilian haemoglobin elucidated by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49947-x
    DOI: 10.1038/s41467-024-49947-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49947-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49947-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Herzik & Mengyu Wu & Gabriel C. Lander, 2019. "High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radostin Danev & Matthew Belousoff & Yi-Lynn Liang & Xin Zhang & Fabian Eisenstein & Denise Wootten & Patrick M. Sexton, 2021. "Routine sub-2.5 Å cryo-EM structure determination of GPCRs," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Marta Ukleja & Lara Kricks & Gabriel Torrens & Ilaria Peschiera & Ines Rodrigues-Lopes & Marcin Krupka & Julia García-Fernández & Roberto Melero & Rosa Campo & Ana Eulalio & André Mateus & María López, 2024. "Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. J. Ryan Feathers & Ryan C. Vignogna & J. Christopher Fromme, 2024. "Structural basis for Rab6 activation by the Ric1-Rgp1 complex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49947-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.