IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49887-6.html
   My bibliography  Save this article

Linear ubiquitination regulates the KSHV replication and transcription activator protein to control infection

Author

Listed:
  • Yi Luan

    (The First Affiliated Hospital of Zhengzhou University
    Henan Academy of Innovations in Medical Science
    the First Affiliated Hospital of Zhengzhou University
    the First Affiliated Hospital of Zhengzhou University)

  • Wenying Long

    (Zhejiang University)

  • Lisi Dai

    (Zhejiang University School of Medicine
    Zhejiang University School of Medicine
    Zhejiang University)

  • Panfeng Tao

    (Zhejiang University)

  • Zhifen Deng

    (The First Affiliated Hospital of Zhengzhou University
    Henan Academy of Innovations in Medical Science
    the First Affiliated Hospital of Zhengzhou University
    the First Affiliated Hospital of Zhengzhou University)

  • Zongping Xia

    (The First Affiliated Hospital of Zhengzhou University
    Henan Academy of Innovations in Medical Science
    the First Affiliated Hospital of Zhengzhou University
    the First Affiliated Hospital of Zhengzhou University)

Abstract

Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein’s activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA’s nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.

Suggested Citation

  • Yi Luan & Wenying Long & Lisi Dai & Panfeng Tao & Zhifen Deng & Zongping Xia, 2024. "Linear ubiquitination regulates the KSHV replication and transcription activator protein to control infection," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49887-6
    DOI: 10.1038/s41467-024-49887-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49887-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49887-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fumiyo Ikeda & Yonathan Lissanu Deribe & Sigrid S. Skånland & Benjamin Stieglitz & Caroline Grabbe & Mirita Franz-Wachtel & Sjoerd J. L. van Wijk & Panchali Goswami & Vanja Nagy & Janos Terzic & Fumin, 2011. "SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis," Nature, Nature, vol. 471(7340), pages 637-641, March.
    2. Elena Rivkin & Stephanie M. Almeida & Derek F. Ceccarelli & Yu-Chi Juang & Teresa A. MacLean & Tharan Srikumar & Hao Huang & Wade H. Dunham & Ryutaro Fukumura & Gang Xie & Yoichi Gondo & Brian Raught , 2013. "The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis," Nature, Nature, vol. 498(7454), pages 318-324, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esther Hoste & Kim Lecomte & Karl Annusver & Niels Vandamme & Jana Roels & Sophia Maschalidi & Lien Verboom & Hanna-Kaisa Vikkula & Mozes Sze & Lisette Van Hove & Kevin Verstaen & Arne Martens & Tino , 2021. "OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Hannah Schünke & Ulrike Göbel & Ivan Dikic & Manolis Pasparakis, 2021. "OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Xiangyi S. Wang & Thomas R. Cotton & Sarah J. Trevelyan & Lachlan W. Richardson & Wei Ting Lee & John Silke & Bernhard C. Lechtenberg, 2023. "The unifying catalytic mechanism of the RING-between-RING E3 ubiquitin ligase family," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Lining Lu & Xiaoguo Zhai & Xiaolong Li & Shuansuo Wang & Lijun Zhang & Luyang Wang & Xi Jin & Lujun Liang & Zhiheng Deng & Zichen Li & Yanfeng Wang & Xiangdong Fu & Honggang Hu & Jiawei Wang & Ziqing , 2022. "Met1-specific motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to hydrolyse Met1 ubiquitin chains," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49887-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.