Author
Listed:
- Stuart Middlemiss
(Newcastle University)
- Matthieu Blandenet
(Newcastle University)
- David M. Roberts
(University of Warwick)
- Andrew McMahon
(University of Warwick)
- James Grimshaw
(Newcastle University)
- Joshua M. Edwards
(Newcastle University
University of Warwick)
- Zikai Sun
(The Chinese University of Hong Kong)
- Kevin D. Whitley
(Newcastle University)
- Thierry Blu
(The Chinese University of Hong Kong
National Taiwan University)
- Henrik Strahl
(Newcastle University)
- Séamus Holden
(Newcastle University
University of Warwick)
Abstract
Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. We found that the B. subtilis elongasome is highly processive and that processive synthesis events are frequently terminated by rapid reversal or extended pauses. We found that cellular levels of RodA regulate elongasome processivity, reversal and pausing. Our single-molecule data, together with stochastic simulations, show that elongasome dynamics and processivity are regulated by molecular motor tug-of-war competition between several, likely two, oppositely oriented peptidoglycan synthesis complexes associated with the MreB filament. Altogether these results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.
Suggested Citation
Stuart Middlemiss & Matthieu Blandenet & David M. Roberts & Andrew McMahon & James Grimshaw & Joshua M. Edwards & Zikai Sun & Kevin D. Whitley & Thierry Blu & Henrik Strahl & Séamus Holden, 2024.
"Molecular motor tug-of-war regulates elongasome cell wall synthesis dynamics in Bacillus subtilis,"
Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49785-x
DOI: 10.1038/s41467-024-49785-x
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49785-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.