IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49685-0.html
   My bibliography  Save this article

Exploring the impact of primer length on efficient gene detection via high-throughput sequencing

Author

Listed:
  • Julia Micheel

    (Friedrich Schiller University
    Leibniz Institute on Aging—Fritz Lipmann Institute (FLI))

  • Aram Safrastyan

    (Friedrich Schiller University
    Leibniz Institute on Aging—Fritz Lipmann Institute (FLI))

  • Franziska Aron

    (Friedrich Schiller University
    Leibniz Institute on Aging—Fritz Lipmann Institute (FLI))

  • Damian Wollny

    (Friedrich Schiller University
    Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)
    Max Planck Institute for Evolutionary Anthropology)

Abstract

Reverse transcription (RT) is a crucial step in most RNA analysis methods. Optimizing protocols for this initial stage is critical for effective target detection, particularly when working with limited input RNA. Several factors, such as the input material quality and reaction conditions, influence RT efficiency. However, the effect of RT primer length on gene detection efficiency remains largely unknown. Thus, we investigate its impact by generating RNA-seq libraries with random RT primers of 6, 12, 18, or 24 nucleotides. To our surprise, the 18mer primer shows superior efficiency in overall transcript detection compared to the commonly used 6mer primer, especially in detecting longer RNA transcripts in complex human tissue samples. This study highlights the critical role of primer length in RT efficiency, which has significant potential to benefit various transcriptomic assays, from basic research to clinical diagnostics, given the central role of RT in RNA-related analyses.

Suggested Citation

  • Julia Micheel & Aram Safrastyan & Franziska Aron & Damian Wollny, 2024. "Exploring the impact of primer length on efficient gene detection via high-throughput sequencing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49685-0
    DOI: 10.1038/s41467-024-49685-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49685-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49685-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes W. Bagnoli & Christoph Ziegenhain & Aleksandar Janjic & Lucas E. Wange & Beate Vieth & Swati Parekh & Johanna Geuder & Ines Hellmann & Wolfgang Enard, 2018. "Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Battenberg & S. Thomas Kelly & Radu Abu Ras & Nicola A. Hetherington & Makoto Hayashi & Aki Minoda, 2022. "A flexible cross-platform single-cell data processing pipeline," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Joachim Jonghe & Tomasz S. Kaminski & David B. Morse & Marcin Tabaka & Anna L. Ellermann & Timo N. Kohler & Gianluca Amadei & Charlotte E. Handford & Gregory M. Findlay & Magdalena Zernicka-Goetz & Sa, 2023. "spinDrop: a droplet microfluidic platform to maximise single-cell sequencing information content," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Shruthi Kalgudde Gopal & Ruoxuan Dai & Ania Maria Stefanska & Meshal Ansari & Jiakuan Zhao & Pushkar Ramesh & Johannes W. Bagnoli & Donovan Correa-Gallegos & Yue Lin & Simon Christ & Ilias Angelidis &, 2023. "Wound infiltrating adipocytes are not myofibroblasts," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Konstantin Lutz & Andrea Musumeci & Christopher Sie & Ezgi Dursun & Elena Winheim & Johannes Bagnoli & Christoph Ziegenhain & Lisa Rausch & Volker Bergen & Malte D. Luecken & Robert A. J. Oostendorp &, 2022. "Ly6D+Siglec-H+ precursors contribute to conventional dendritic cells via a Zbtb46+Ly6D+ intermediary stage," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49685-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.