IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49574-6.html
   My bibliography  Save this article

Ultrabright and stable top-emitting quantum-dot light-emitting diodes with negligible angular color shift

Author

Listed:
  • Mengqi Li

    (Soochow University)

  • Rui Li

    (Soochow University)

  • Longjia Wu

    (Nanshan District)

  • Xiongfeng Lin

    (Nanshan District)

  • Xueqing Xia

    (Soochow University)

  • Zitong Ao

    (Nanshan District)

  • Xiaojuan Sun

    (Soochow University)

  • Xingtong Chen

    (Soochow University)

  • Song Chen

    (Soochow University
    Soochow University)

Abstract

Top emission can enhance luminance, color purity, and panel-manufacturing compatibility for emissive displays. Still, top-emitting quantum-dot light-emitting diodes (QLEDs) suffer from poor stability, low light outcoupling, and non-negligible viewing-angle dependence because, for QLEDs with non-red emission, the electrically optimum device structure is incompatible with single-mode optical microcavity. Here, we demonstrate that by improving the way of determining reflection penetration depths and creating refractive-index-lowering processes, the issues faced by green QLEDs can be overcome. This leads to advanced device performance, including a luminance exceeding 1.6 million nits, a current efficiency of 204.2 cd A−1, and a T95 operational lifetime of 15,600 hours at 1000 nits. Meanwhile, our design does not compromise light outcoupling as it offers an external quantum efficiency of 29.2% without implementing light extraction methods. Lastly, an angular color shift of Δu’v’ = 0.0052 from 0° to 60° is achieved by narrowing the emission linewidth of quantum dots.

Suggested Citation

  • Mengqi Li & Rui Li & Longjia Wu & Xiongfeng Lin & Xueqing Xia & Zitong Ao & Xiaojuan Sun & Xingtong Chen & Song Chen, 2024. "Ultrabright and stable top-emitting quantum-dot light-emitting diodes with negligible angular color shift," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49574-6
    DOI: 10.1038/s41467-024-49574-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49574-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49574-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xingtong Chen & Xiongfeng Lin & Likuan Zhou & Xiaojuan Sun & Rui Li & Mengyu Chen & Yixing Yang & Wenjun Hou & Longjia Wu & Weiran Cao & Xin Zhang & Xiaolin Yan & Song Chen, 2023. "Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyu He & Xiaoqi Tang & Yunzhou Deng & Ni Yin & Wangxiao Jin & Xiuyuan Lu & Desui Chen & Chenyang Wang & Tulai Sun & Qi Chen & Yizheng Jin, 2023. "Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Qiang Su & Zinan Chen & Shuming Chen, 2024. "Tracing the electron transport behavior in quantum-dot light-emitting diodes via single photon counting technique," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Wenjing Zhang & Bo Li & Chun Chang & Fei Chen & Qin Zhang & Qingli Lin & Lei Wang & Jinhang Yan & Fangfang Wang & Yihua Chong & Zuliang Du & Fengjia Fan & Huaibin Shen, 2024. "Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49574-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.