IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49540-2.html
   My bibliography  Save this article

Precise recognition of benzonitrile derivatives with supramolecular macrocycle of phosphorylated cavitand by co-crystallization method

Author

Listed:
  • Heng Li

    (Nanjing University)

  • Zhijin Li

    (Nanjing University)

  • Chen Lin

    (Nanjing University)

  • Juli Jiang

    (Nanjing University)

  • Leyong Wang

    (Nanjing University)

Abstract

The importance of molecular docking in drug discovery lies in the precise recognition between potential drug compounds and their target receptors, which is generally based on the computational method. However, it will become quite interesting if the rigid cavity structure of supramolecular macrocycles can precisely recognize a series of guests with specific fragments by mimicking molecular docking through co-crystallization experiments. Herein, we report a phenylphosphine oxide-bridged aromatic supramolecular macrocycle, F[3]A1-[P(O)Ph]3, which precisely recognizes benzonitrile derivatives through non-covalent interactions to form key-lock complexes by co-crystallization method. A total of 15 various benzonitrile derivatives as guest molecules are specifically bound by F[3]A1-[P(O)Ph]3 in co-crystal structures, respectively. Notably, among them, crisaborole (anti-dermatitis) and alectinib (anti-cancer) with the benzonitrile fragment, which are two commercial drug molecules approved by the U.S. Food and Drug Administration (FDA), could also form a key-lock complex with F[3]A1-[P(O)Ph]3 in the crystal state, respectively.

Suggested Citation

  • Heng Li & Zhijin Li & Chen Lin & Juli Jiang & Leyong Wang, 2024. "Precise recognition of benzonitrile derivatives with supramolecular macrocycle of phosphorylated cavitand by co-crystallization method," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49540-2
    DOI: 10.1038/s41467-024-49540-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49540-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49540-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Jiao & Yunyan Qiu & Long Zhang & Wei-Guang Liu & Haochuan Mao & Hongliang Chen & Yuanning Feng & Kang Cai & Dengke Shen & Bo Song & Xiao-Yang Chen & Xuesong Li & Xingang Zhao & Ryan M. Young & Ch, 2022. "Electron-catalysed molecular recognition," Nature, Nature, vol. 603(7900), pages 265-270, March.
    2. Hao Zheng & Lulu Fu & Ranran Wang & Jianmin Jiao & Yingying Song & Conghao Shi & Yuan Chen & Juli Jiang & Chen Lin & Jing Ma & Leyong Wang, 2023. "Cation controlled rotation in anionic pillar[5]arenes and its application for fluorescence switch," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Manuel Weh & Kazutaka Shoyama & Frank Würthner, 2023. "Preferential molecular recognition of heterochiral guests within a cyclophane receptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yitao Wu & Meiqi Tang & Zeju Wang & Le Shi & Zhangyi Xiong & Zhijie Chen & Jonathan L. Sessler & Feihe Huang, 2023. "Pillararene incorporated metal–organic frameworks for supramolecular recognition and selective separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Mittelman, Gur & Eran, Ronen & Zhivin, Lev & Eisenhändler, Ohad & Luzon, Yossi & Tshuva, Moshe, 2023. "The potential of renewable electricity in isolated grids: The case of Israel in 2050," Applied Energy, Elsevier, vol. 349(C).
    3. Lei Wei & Tu Sun & Zhaolin Shi & Zezhao Xu & Wen Wen & Shan Jiang & Yingbo Zhao & Yanhang Ma & Yue-Biao Zhang, 2022. "Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Weiyuan Li & Lu Pan & Weifeng Hong & Florent Ginhoux & Xuan Zhang & Chunjie Xiao & Xuexin Li, 2024. "A single-cell pan-cancer analysis to show the variability of tumor-infiltrating myeloid cells in immune checkpoint blockade," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Prakash, Abhijith & Ashby, Rohan & Bruce, Anna & MacGill, Iain, 2023. "Quantifying reserve capabilities for designing flexible electricity markets: An Australian case study with increasing penetrations of renewables," Energy Policy, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49540-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.