IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49517-1.html
   My bibliography  Save this article

Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids

Author

Listed:
  • Dan-Dan Liu

    (Zhejiang University
    Zhejiang University)

  • Wenlong Ding

    (Zhejiang University
    Zhejiang University)

  • Jin-Tao Cheng

    (Zhejiang University
    Zhejiang University)

  • Qiushi Wei

    (Beihang University)

  • Yinuo Lin

    (Chinese Academy of Sciences)

  • Tian-Yi Zhu

    (Zhejiang University
    Zhejiang University)

  • Jing Tian

    (Chinese Academy of Sciences)

  • Ke Sun

    (Westlake University)

  • Long Zhang

    (Zhejiang University)

  • Peilong Lu

    (Westlake University)

  • Fan Yang

    (Zhejiang University School of Medicine)

  • Chao Liu

    (Beihang University)

  • Shibing Tang

    (Chinese Academy of Sciences
    China-New Zealand Joint Laboratory on Biomedicine and Health)

  • Bing Yang

    (Zhejiang University
    Zhejiang University)

Abstract

Latent bioreactive unnatural amino acids (Uaas) have been widely used in the development of covalent drugs and identification of protein interactors, such as proteins, DNA, RNA and carbohydrates. However, it is challenging to perform high-throughput identification of Uaa cross-linking products due to the complexities of protein samples and the data analysis processes. Enrichable Uaas can effectively reduce the complexities of protein samples and simplify data analysis, but few cross-linked peptides were identified from mammalian cell samples with these Uaas. Here we develop an enrichable and multiple amino acids reactive Uaa, eFSY, and demonstrate that eFSY is MS cleavable when eFSY-Lys and eFSY-His are the cross-linking products. An identification software, AixUaa is developed to decipher eFSY mass cleavable data. We systematically identify direct interactomes of Thioredoxin 1 (Trx1) and Selenoprotein M (SELM) with eFSY and AixUaa.

Suggested Citation

  • Dan-Dan Liu & Wenlong Ding & Jin-Tao Cheng & Qiushi Wei & Yinuo Lin & Tian-Yi Zhu & Jing Tian & Ke Sun & Long Zhang & Peilong Lu & Fan Yang & Chao Liu & Shibing Tang & Bing Yang, 2024. "Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49517-1
    DOI: 10.1038/s41467-024-49517-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49517-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49517-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhen-Lin Chen & Jia-Ming Meng & Yong Cao & Ji-Li Yin & Run-Qian Fang & Sheng-Bo Fan & Chao Liu & Wen-Feng Zeng & Yue-He Ding & Dan Tan & Long Wu & Wen-Jing Zhou & Hao Chi & Rui-Xiang Sun & Meng-Qiu Do, 2019. "A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Wenlong Ding & Hongxia Zhao & Yulin Chen & Bin Zhang & Yang Yang & Jia Zang & Jing Wu & Shixian Lin, 2020. "Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Yi Yang & Haiping Song & Dan He & Shuai Zhang & Shizhong Dai & Shixian Lin & Rong Meng & Chu Wang & Peng R. Chen, 2016. "Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    4. Hongxia Zhao & Wenlong Ding & Jia Zang & Yang Yang & Chao Liu & Linzhen Hu & Yulin Chen & Guanglong Liu & Yu Fang & Ying Yuan & Shixian Lin, 2021. "Directed-evolution of translation system for efficient unnatural amino acids incorporation and generalizable synthetic auxotroph construction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangzhou Hao & Jieran Ma & Linhuan Luo & Weijun Dang & Yiwei Xue, 2023. "Power distribution network inspection vision system based on bionic vision image processing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(2), pages 568-577, April.
    2. Li Wang & Jiali Yu & Zishuo Yu & Qianmin Wang & Wanjun Li & Yulei Ren & Zhenguo Chen & Shuang He & Yanhui Xu, 2022. "Structure of nucleosome-bound human PBAF complex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Hongxia Zhao & Wenlong Ding & Jia Zang & Yang Yang & Chao Liu & Linzhen Hu & Yulin Chen & Guanglong Liu & Yu Fang & Ying Yuan & Shixian Lin, 2021. "Directed-evolution of translation system for efficient unnatural amino acids incorporation and generalizable synthetic auxotroph construction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Antonia Moll & Lisa Marie Ramirez & Momchil Ninov & Juliane Schwarz & Henning Urlaub & Markus Zweckstetter, 2022. "Hsp multichaperone complex buffers pathologically modified Tau," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Yida Jiang & Xinghe Zhang & Honggang Nie & Jianxiong Fan & Shuangshuang Di & Hui Fu & Xiu Zhang & Lijuan Wang & Chun Tang, 2024. "Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Ravi R. Sonani & Lee K. Palmer & Nathaniel C. Esteves & Abigail A. Horton & Amanda L. Sebastian & Rebecca J. Kelly & Fengbin Wang & Mark A. B. Kreutzberger & William K. Russell & Petr G. Leiman & Birg, 2024. "An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Matthew Day & Bilal Tetik & Milena Parlak & Yasser Almeida-Hernández & Markus Räschle & Farnusch Kaschani & Heike Siegert & Anika Marko & Elsa Sanchez-Garcia & Markus Kaiser & Isabel A. Barker & Laure, 2024. "TopBP1 utilises a bipartite GINS binding mode to support genome replication," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Josh P. Prince & Jani R. Bolla & Gemma L. M. Fisher & Jarno Mäkelä & Marjorie Fournier & Carol V. Robinson & Lidia K. Arciszewska & David J. Sherratt, 2021. "Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Aleksandra Levina & Kaelin D. Fleming & John E. Burke & Thomas A. Leonard, 2022. "Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Anaïs Menny & Marie V. Lukassen & Emma C. Couves & Vojtech Franc & Albert J. R. Heck & Doryen Bubeck, 2021. "Structural basis of soluble membrane attack complex packaging for clearance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Yichen Zhong & Hakimeh Moghaddas Sani & Bishnu P. Paudel & Jason K. K. Low & Ana P. G. Silva & Stefan Mueller & Chandrika Deshpande & Santosh Panjikar & Xavier J. Reid & Max J. Bedward & Antoine M. Oi, 2022. "The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49517-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.