IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49404-9.html
   My bibliography  Save this article

Probing the structure of water in individual living cells

Author

Listed:
  • Xiaoqi Lang

    (Columbia University)

  • Lixue Shi

    (Fudan University)

  • Zhilun Zhao

    (Columbia University)

  • Wei Min

    (Columbia University)

Abstract

Water regulates or even governs a wide range of biological processes. Despite its fundamental importance, surprisingly little is known about the structure of intracellular water. Herein we employ a Raman micro-spectroscopy technique to uncover the composition, abundance and vibrational spectra of intracellular water in individual living cells. In three different cell types, we show a small but consistent population (~3%) of non-bulk-like water. It exhibits a weakened hydrogen-bonded network and a more disordered tetrahedral structure. We attribute this population to biointerfacial water located in the vicinity of biomolecules. Moreover, our whole-cell modeling suggests that all soluble (globular) proteins inside cells are surrounded by, on average, one full molecular layer (about 2.6 Angstrom) of biointerfacial water. Furthermore, relative invariance of biointerfacial water is observed among different single cells. Overall, our study not only opens up experimental possibilities of interrogating water structure in vivo but also provides insights into water in life.

Suggested Citation

  • Xiaoqi Lang & Lixue Shi & Zhilun Zhao & Wei Min, 2024. "Probing the structure of water in individual living cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49404-9
    DOI: 10.1038/s41467-024-49404-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49404-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49404-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Derek Ma & Chenxuan Wang & Claribel Acevedo-Vélez & Samuel H. Gellman & Nicholas L. Abbott, 2015. "Modulation of hydrophobic interactions by proximally immobilized ions," Nature, Nature, vol. 517(7534), pages 347-350, January.
    2. Joel G. Davis & Kamil P. Gierszal & Ping Wang & Dor Ben-Amotz, 2012. "Water structural transformation at molecular hydrophobic interfaces," Nature, Nature, vol. 491(7425), pages 582-585, November.
    3. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    4. Martijn Tros & Linli Zheng & Johannes Hunger & Mischa Bonn & Daniel Bonn & Gertien J. Smits & Sander Woutersen, 2017. "Picosecond orientational dynamics of water in living cells," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    5. Yuen-Kit Cheng & Peter J. Rossky, 1998. "Surface topography dependence of biomolecular hydrophobic hydration," Nature, Nature, vol. 392(6677), pages 696-699, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Marques, Murilo S. & Lomba, Enrique & Noya, Eva G. & González-Salgado, Diego & Barbosa, Marcia, 2021. "Modeling the temperature of maximum density of aqueous tert-butanol solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yang, Xin & Cheng, Ke & Zhao, Shi-Lin & Jia, Guo-zhu, 2020. "Ionic dissolution and precipitation of KBF4 and NaBF4 aqueous solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Xiao-Ting Yin & En-Ming You & Ru-Yu Zhou & Li-Hong Zhu & Wei-Wei Wang & Kai-Xuan Li & De-Yin Wu & Yu Gu & Jian-Feng Li & Bing-Wei Mao & Jia-Wei Yan, 2024. "Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yinghao Li & Chun-Kuo Peng & Yuntong Sun & L. D. Nicole Sui & Yu-Chung Chang & San-Yuan Chen & Yingtang Zhou & Yan-Gu Lin & Jong-Min Lee, 2024. "Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Jin Ming Wang & Qin Yao Zhu & Jeong Heon Lee & Tae Gyun Woo & Yue Xing Zhang & Woo-Dong Jang & Tae Kyu Kim, 2023. "Asymmetric gradient orbital interaction of hetero-diatomic active sites for promoting C − C coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Kanth, Jampa Maruthi Pradeep & Anishetty, Ramesh, 2013. "Hydrophobic force, a Casimir-like effect due to hydrogen-bond fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4804-4823.
    11. Cong Zhao & Jiazheng Diao & Zhao Liu & Jie Hao & Suhang He & Shaojia Li & Xingxing Li & Guangwu Li & Qiang Fu & Chuancheng Jia & Xuefeng Guo, 2024. "Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Xianxian Qin & Jiejie Li & Tian-Wen Jiang & Xian-Yin Ma & Kun Jiang & Bo Yang & Shengli Chen & Wen-Bin Cai, 2024. "Disentangling heterogeneous thermocatalytic formic acid dehydrogenation from an electrochemical perspective," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Xiaogang Sun & Wei Shen & Hao Liu & Pinxian Xi & Mietek Jaroniec & Yao Zheng & Shi-Zhang Qiao, 2024. "Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Peng Li & Yuzhou Jiao & Yaner Ruan & Houguo Fei & Yana Men & Cunlan Guo & Yuen Wu & Shengli Chen, 2023. "Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Xiaoyang He & Li Lin & Xiangying Li & Minzhi Zhu & Qinghong Zhang & Shunji Xie & Bingbao Mei & Fanfei Sun & Zheng Jiang & Jun Cheng & Ye Wang, 2024. "Roles of copper(I) in water-promoted CO2 electrolysis to multi-carbon compounds," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Xiaoju Yang & Chao Rong & Li Zhang & Zhenkun Ye & Zhiming Wei & Chengdi Huang & Qiao Zhang & Qing Yuan & Yueming Zhai & Fu-Zhen Xuan & Bingjun Xu & Bowei Zhang & Xuan Yang, 2024. "Mechanistic insights into C-C coupling in electrochemical CO reduction using gold superlattices," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49404-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.