IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49210-3.html
   My bibliography  Save this article

Easy-to-actuate multi-compatible truss structures with prescribed reconfiguration

Author

Listed:
  • Lin Ai

    (Wuhan University)

  • Shukun Yin

    (California Institute of Technology; Pasadena
    Wuhan University)

  • Weixia He

    (Wuhan University)

  • Peidong Zhang

    (Wuhan University)

  • Yang Li

    (Wuhan University
    Wuhan University Shenzhen Research Institute)

Abstract

Multi-stable structures attract great interest because they possess special energy landscapes with domains of attraction around the stable states. Consequently, multi-stable structures have the potential to achieve prescribed reconfiguration with only a few lightweight actuators (such as shape-memory alloy springs), and do not need constant actuation to be locked at a stable state. However, most existing multi-stability designs are based on assembling bi-stable unit cells, which contain multitudes of distractive stable states, diminishing the feasibility of reconfiguration actuation. Another type is by introducing prestress together with kinematic symmetry or nonlinearity to achieve multi-stability, but the resultant structure often suffers the lack of stiffness. To help address these challenges, we firstly introduce the constraints that a truss structure is simultaneously compatible at multiple (more than two) prescribed states. Then, we solve for the design of multi-stable truss structures, named multi-compatible structures in this paper, where redundant stable states are limited. Secondly, we explore minimum energy paths connecting the designed stable states, and compute for a simple and inaccurate pulling actuation guiding the structure to transform along the computed paths. Finally, we fabricated four prototypes to demonstrate that prescribed reconfigurations with easy-actuation have been achieved and applied a quadra-stable structure to the design of a variable stiffness gripper. Altogether, our full-cycle design approach contains multi-stability design, stiffness design, minimum-energy-path finding, and pulling actuation design, which highlights the potential for designing morphing structures with lightweight actuation for practical applications.

Suggested Citation

  • Lin Ai & Shukun Yin & Weixia He & Peidong Zhang & Yang Li, 2024. "Easy-to-actuate multi-compatible truss structures with prescribed reconfiguration," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49210-3
    DOI: 10.1038/s41467-024-49210-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49210-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49210-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49210-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.