IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49111-5.html
   My bibliography  Save this article

Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers

Author

Listed:
  • Danilo Hirabae Oliveira

    (AlbaNova University Center
    KTH Royal Institute of Technology)

  • Vasantha Gowda

    (KTH Royal Institute of Technology)

  • Tobias Sparrman

    (Umeå University)

  • Linnea Gustafsson

    (Spiber Technologies AB)

  • Rodrigo Sanches Pires

    (KTH Royal Institute of Technology)

  • Christian Riekel

    (European Synchrotron Radiation Facility, B.P. 220)

  • Andreas Barth

    (Stockholm University)

  • Christofer Lendel

    (KTH Royal Institute of Technology)

  • My Hedhammar

    (AlbaNova University Center)

Abstract

The major ampullate Spidroin 1 (MaSp1) is the main protein of the dragline spider silk. The C-terminal (CT) domain of MaSp1 is crucial for the self-assembly into fibers but the details of how it contributes to the fiber formation remain unsolved. Here we exploit the fact that the CT domain can form silk-like fibers by itself to gain knowledge about this transition. Structural investigations of fibers from recombinantly produced CT domain from E. australis MaSp1 reveal an α-helix to β-sheet transition upon fiber formation and highlight the helix No4 segment as most likely to initiate the structural conversion. This prediction is corroborated by the finding that a peptide corresponding to helix No4 has the ability of pH-induced conversion into β-sheets and self-assembly into nanofibrils. Our results provide structural information about the CT domain in fiber form and clues about its role in triggering the structural conversion of spidroins during fiber assembly.

Suggested Citation

  • Danilo Hirabae Oliveira & Vasantha Gowda & Tobias Sparrman & Linnea Gustafsson & Rodrigo Sanches Pires & Christian Riekel & Andreas Barth & Christofer Lendel & My Hedhammar, 2024. "Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49111-5
    DOI: 10.1038/s41467-024-49111-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49111-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49111-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Glareh Askarieh & My Hedhammar & Kerstin Nordling & Alejandra Saenz & Cristina Casals & Anna Rising & Jan Johansson & Stefan D. Knight, 2010. "Self-assembly of spider silk proteins is controlled by a pH-sensitive relay," Nature, Nature, vol. 465(7295), pages 236-238, May.
    2. Franz Hagn & Lukas Eisoldt & John G. Hardy & Charlotte Vendrely & Murray Coles & Thomas Scheibel & Horst Kessler, 2010. "A conserved spider silk domain acts as a molecular switch that controls fibre assembly," Nature, Nature, vol. 465(7295), pages 239-242, May.
    3. Charlotte Rat & Julia C. Heiby & Jessica P. Bunz & Hannes Neuweiler, 2018. "Two-step self-assembly of a spider silk molecular clamp," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenchen Wu & Yu Duan & Lintao Yu & Yao Hu & Chenxi Zhao & Chunwang Ji & Xiangdong Guo & Shu Zhang & Xiaokang Dai & Puyi Ma & Qian Wang & Shengjie Ling & Xiaoxia Yang & Qing Dai, 2024. "In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jingyao Li & Bojing Jiang & Xinyuan Chang & Han Yu & Yichao Han & Fuzhong Zhang, 2023. "Bi-terminal fusion of intrinsically-disordered mussel foot protein fragments boosts mechanical strength for protein fibers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Tina Arndt & Kristaps Jaudzems & Olga Shilkova & Juanita Francis & Mathias Johansson & Peter R. Laity & Cagla Sahin & Urmimala Chatterjee & Nina Kronqvist & Edgar Barajas-Ledesma & Rakesh Kumar & Gefe, 2022. "Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Jianming Chen & Arata Tsuchida & Ali D. Malay & Kousuke Tsuchiya & Hiroyasu Masunaga & Yui Tsuji & Mako Kuzumoto & Kenji Urayama & Hirofumi Shintaku & Keiji Numata, 2024. "Replicating shear-mediated self-assembly of spider silk through microfluidics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49111-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.