IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49085-4.html
   My bibliography  Save this article

Direct production of low-oxygen-concentration titanium from molten titanium

Author

Listed:
  • Toru H. Okabe

    (The University of Tokyo)

  • Gen Kamimura

    (The University of Tokyo)

  • Takashi Ikeda

    (The University of Tokyo)

  • Takanari Ouchi

    (The University of Tokyo)

Abstract

Titanium (Ti) is an attractive material, abundant in nature and possessing superior mechanical and chemical properties. However, its widespread use is significantly hampered by the strong affinity between titanium and oxygen (O), resulting in elevated manufacturing costs during the refining, melting, and casting processes. The current work introduces a high-throughput technique that effectively reduces the oxygen content in molten titanium to a level suitable for structural material applications (1000 mass ppm, equivalent to 0.1 mass%). This technique aspires to streamline the mass production of titanium by seamlessly integrating the refining, melting, and casting processes. The developed method leverages the high affinity of rare-earth metals, such as yttrium (Y), for oxygen. This method utilizes the formation reaction of their oxyhalides (YOF) to directly remove oxygen from liquid titanium, resulting in titanium with a significantly reduced oxygen content of 200 mass ppm. This technique enables the direct conversion of titanium oxide feeds into low-oxygen titanium without requiring conversion into intermediate compounds. Additionally, this process offers a pathway for the upgrade recycling of high-oxygen-content titanium scrap directly into low-oxygen titanium. Consequently, this technology holds the potential to dramatically lower titanium production costs, thereby facilitating its more widespread utilization.

Suggested Citation

  • Toru H. Okabe & Gen Kamimura & Takashi Ikeda & Takanari Ouchi, 2024. "Direct production of low-oxygen-concentration titanium from molten titanium," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49085-4
    DOI: 10.1038/s41467-024-49085-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49085-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49085-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49085-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.