IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49074-7.html
   My bibliography  Save this article

Calcite carbonate sinks low-density plastic debris in open oceans

Author

Listed:
  • Xiang-Fei Sun

    (South China University of Technology
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

  • Yanxu Zhang

    (Nanjing University)

  • Meng-Yi Xie

    (South China University of Technology)

  • Lei Mai

    (South China University of Technology
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

  • Eddy Y. Zeng

    (South China University of Technology
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

Abstract

The vertical settling of plastic debris in oceans is poorly understood. A large share of low-density microplastics (LDMPs) are largely absent from sea surfaces. The present study employs a model that considers the potential of an overlooked microbially induced calcium carbonate precipitation (MICP) process and new motion equations for irregular LDMPs. Here we show that the motion of LDMPs in the present model, exhibiting a damped oscillation pattern, is quite different from that in biofouling models. Furthermore, LDMPs in the size range of 10–200 µm are most likely to gain sufficient density at the biofouling/MICP stage to independently sink to the ocean floor with relatively small drag coefficients, potentially explaining the selective enrichment of LDMPs in the oceanic sediment. The size and shape exhibit strong non-linear effects on the settling patterns of LDMPs. Overall, the present study highlights the importance of calcite-mediated sinking of LDMPs in open oceans.

Suggested Citation

  • Xiang-Fei Sun & Yanxu Zhang & Meng-Yi Xie & Lei Mai & Eddy Y. Zeng, 2024. "Calcite carbonate sinks low-density plastic debris in open oceans," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49074-7
    DOI: 10.1038/s41467-024-49074-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49074-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49074-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katsiaryna Pabortsava & Richard S. Lampitt, 2020. "High concentrations of plastic hidden beneath the surface of the Atlantic Ocean," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S. Lampitt & Stephen Fletcher & Matthew Cole & Alice Kloker & Stefan Krause & Fran O’Hara & Peter Ryde & Mahua Saha & Anastasia Voronkova & Adrian Whyle, 2023. "Stakeholder alliances are essential to reduce the scourge of plastic pollution," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    2. Kunihiro Aoki & Ryo Furue, 2021. "A model for the size distribution of marine microplastics: A statistical mechanics approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-19, November.
    3. Beatrice Salieri & Natasha Stoudmann & Roland Hischier & Claudia Som & Bernd Nowack, 2021. "How Relevant Are Direct Emissions of Microplastics into Freshwater from an LCA Perspective?," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    4. S. R. Kahane-Rapport & M. F. Czapanskiy & J. A. Fahlbusch & A. S. Friedlaender & J. Calambokidis & E. L. Hazen & J. A. Goldbogen & M. S. Savoca, 2022. "Field measurements reveal exposure risk to microplastic ingestion by filter-feeding megafauna," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49074-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.