IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48679-2.html
   My bibliography  Save this article

Fluorescent fatty acid conjugates for live cell imaging of peroxisomes

Author

Listed:
  • Daria Korotkova

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Anya Borisyuk

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Anthony Guihur

    (University of Lausanne)

  • Manon Bardyn

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Fabien Kuttler

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Luc Reymond

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Milena Schuhmacher

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Triana Amen

    (Ecole Polytechnique Fédérale de Lausanne (EPFL)
    University of Southampton)

Abstract

Peroxisomes are eukaryotic organelles that are essential for multiple metabolic pathways, including fatty acid oxidation, degradation of amino acids, and biosynthesis of ether lipids. Consequently, peroxisome dysfunction leads to pediatric-onset neurodegenerative conditions, including Peroxisome Biogenesis Disorders (PBD). Due to the dynamic, tissue-specific, and context-dependent nature of their biogenesis and function, live cell imaging of peroxisomes is essential for studying peroxisome regulation, as well as for the diagnosis of PBD-linked abnormalities. However, the peroxisomal imaging toolkit is lacking in many respects, with no reporters for substrate import, nor cell-permeable probes that could stain dysfunctional peroxisomes. Here we report that the BODIPY-C12 fluorescent fatty acid probe stains functional and dysfunctional peroxisomes in live mammalian cells. We then go on to improve BODIPY-C12, generating peroxisome-specific reagents, PeroxiSPY650 and PeroxiSPY555. These probes combine high peroxisome specificity, bright fluorescence in the red and far-red spectrum, and fast non-cytotoxic staining, making them ideal tools for live cell, whole organism, or tissue imaging of peroxisomes. Finally, we demonstrate that PeroxiSPY enables diagnosis of peroxisome abnormalities in the PBD CRISPR/Cas9 cell models and patient-derived cell lines.

Suggested Citation

  • Daria Korotkova & Anya Borisyuk & Anthony Guihur & Manon Bardyn & Fabien Kuttler & Luc Reymond & Milena Schuhmacher & Triana Amen, 2024. "Fluorescent fatty acid conjugates for live cell imaging of peroxisomes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48679-2
    DOI: 10.1038/s41467-024-48679-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48679-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48679-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peiqiang Feng & Xudong Wu & Satchal K. Erramilli & Joao A. Paulo & Pawel Knejski & Steven P. Gygi & Anthony A. Kossiakoff & Tom A. Rapoport, 2022. "A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel," Nature, Nature, vol. 607(7918), pages 374-380, July.
    2. Qixin Chen & Hongbao Fang & Xintian Shao & Zhiqi Tian & Shanshan Geng & Yuming Zhang & Huaxun Fan & Pan Xiang & Jie Zhang & Xiaohe Tian & Kai Zhang & Weijiang He & Zijian Guo & Jiajie Diao, 2020. "A dual-labeling probe to track functional mitochondria–lysosome interactions in live cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingxiu Kong & Qingjie Bai & Cuicui Li & Qiqin Wang & Yanfeng Wang & Xintian Shao & Yongchun Wei & Jiarao Sun & Zhenjie Yu & Junling Yin & Bin Shi & Hongbao Fang & Xiaoyuan Chen & Qixin Chen, 2024. "Molecular probes for tracking lipid droplet membrane dynamics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. J. Josephine Botsch & Roswitha Junker & Michèle Sorgenfrei & Patricia P. Ogger & Luca Stier & Susanne Gronau & Peter J. Murray & Markus A. Seeger & Brenda A. Schulman & Bastian Bräuning, 2024. "Doa10/MARCH6 architecture interconnects E3 ligase activity with lipid-binding transmembrane channel to regulate SQLE," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Maximilian Rüttermann & Michelle Koci & Pascal Lill & Ermis Dionysios Geladas & Farnusch Kaschani & Björn Udo Klink & Ralf Erdmann & Christos Gatsogiannis, 2023. "Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Stefan Gaussmann & Rebecca Peschel & Julia Ott & Krzysztof M. Zak & Judit Sastre & Florent Delhommel & Grzegorz M. Popowicz & Job Boekhoven & Wolfgang Schliebs & Ralf Erdmann & Michael Sattler, 2024. "Modulation of peroxisomal import by the PEX13 SH3 domain and a proximal FxxxF binding motif," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48679-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.