IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48646-x.html
   My bibliography  Save this article

Convergent evolution of fern nectaries facilitated independent recruitment of ant-bodyguards from flowering plants

Author

Listed:
  • Jacob S. Suissa

    (University of Tennessee Knoxville)

  • Fay-Wei Li

    (Boyce Thompson Institute
    Cornell University)

  • Corrie S. Moreau

    (Department of Ecology and Evolutionary Biology Cornell University
    Cornell University)

Abstract

Plant–herbivore interactions reciprocally influence species’ evolutionary trajectories. These interactions have led to many physical and chemical defenses across the plant kingdom. Some plants have even evolved indirect defense strategies to outsource their protection to ant bodyguards by bribing them with a sugary reward (nectar). Identifying the evolutionary processes underpinning these indirect defenses provide insight into the evolution of plant-animal interactions. Using a cross-kingdom, phylogenetic approach, we examined the convergent evolution of ant-guarding nectaries across ferns and flowering plants. Here, we discover that nectaries originated in ferns and flowering plants concurrently during the Cretaceous, coinciding with the rise of plant associations in ants. While nectaries in flowering plants evolved steadily through time, ferns showed a pronounced lag of nearly 100 My between their origin and subsequent diversification in the Cenozoic. Importantly, we find that as ferns transitioned from the forest floor into the canopy, they secondarily recruited ant bodyguards from existing ant-angiosperm relationships.

Suggested Citation

  • Jacob S. Suissa & Fay-Wei Li & Corrie S. Moreau, 2024. "Convergent evolution of fern nectaries facilitated independent recruitment of ant-bodyguards from flowering plants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48646-x
    DOI: 10.1038/s41467-024-48646-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48646-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48646-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evan P. Economo & Nitish Narula & Nicholas R. Friedman & Michael D. Weiser & Benoit Guénard, 2018. "Macroecology and macroevolution of the latitudinal diversity gradient in ants," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Connor M. French & Laura D. Bertola & Ana C. Carnaval & Evan P. Economo & Jamie M. Kass & David J. Lohman & Katharine A. Marske & Rudolf Meier & Isaac Overcast & Andrew J. Rominger & Phillip P. A. Sta, 2023. "Global determinants of insect mitochondrial genetic diversity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Runxi Wang & Jamie M. Kass & Chhaya Chaudhary & Evan P. Economo & Benoit Guénard, 2024. "Global biogeographic regions for ants have complex relationships with those for plants and tetrapods," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Lucie Aulus-Giacosa & Sébastien Ollier & Cleo Bertelsmeier, 2024. "Non-native ants are breaking down biogeographic boundaries and homogenizing community assemblages," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48646-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.