IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48496-7.html
   My bibliography  Save this article

Protein Condensate Atlas from predictive models of heteromolecular condensate composition

Author

Listed:
  • Kadi L. Saar

    (Transition Bio Ltd
    University of Cambridge)

  • Rob M. Scrutton

    (University of Cambridge
    University of Oxford)

  • Kotryna Bloznelyte

    (Transition Bio Ltd)

  • Alexey S. Morgunov

    (University of Cambridge)

  • Lydia L. Good

    (University of Cambridge
    National Institutes of Health)

  • Alpha A. Lee

    (University of Cambridge)

  • Sarah A. Teichmann

    (University of Cambridge
    Wellcome Sanger Institute)

  • Tuomas P. J. Knowles

    (University of Cambridge
    University of Cambridge)

Abstract

Biomolecular condensates help cells organise their content in space and time. Cells harbour a variety of condensate types with diverse composition and many are likely yet to be discovered. Here, we develop a methodology to predict the composition of biomolecular condensates. We first analyse available proteomics data of cellular condensates and find that the biophysical features that determine protein localisation into condensates differ from known drivers of homotypic phase separation processes, with charge mediated protein-RNA and hydrophobicity mediated protein-protein interactions playing a key role in the former process. We then develop a machine learning model that links protein sequence to its propensity to localise into heteromolecular condensates. We apply the model across the proteome and find many of the top-ranked targets outside the original training data to localise into condensates as confirmed by orthogonal immunohistochemical staining imaging. Finally, we segment the condensation-prone proteome into condensate types based on an overlap with biomolecular interaction profiles to generate a Protein Condensate Atlas. Several condensate clusters within the Atlas closely match the composition of experimentally characterised condensates or regions within them, suggesting that the Atlas can be valuable for identifying additional components within known condensate systems and discovering previously uncharacterised condensates.

Suggested Citation

  • Kadi L. Saar & Rob M. Scrutton & Kotryna Bloznelyte & Alexey S. Morgunov & Lydia L. Good & Alpha A. Lee & Sarah A. Teichmann & Tuomas P. J. Knowles, 2024. "Protein Condensate Atlas from predictive models of heteromolecular condensate composition," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48496-7
    DOI: 10.1038/s41467-024-48496-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48496-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48496-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daesun Song & Yongsang Jo & Jeong-Mo Choi & Yongwon Jung, 2020. "Client proximity enhancement inside cellular membrane-less compartments governed by client-compartment interactions," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Lin Shan & Guang Xu & Run-Wen Yao & Peng-Fei Luan & Youkui Huang & Pei-Hong Zhang & Yu-Hang Pan & Lin Zhang & Xiang Gao & Ying Li & Shi-Meng Cao & Shuai-Xin Gao & Zheng-Hu Yang & Siqi Li & Liang-Zhong, 2023. "Nucleolar URB1 ensures 3′ ETS rRNA removal to prevent exosome surveillance," Nature, Nature, vol. 615(7952), pages 526-534, March.
    3. Carmen N. Hernández-Candia & Sarah Pearce & Chandra L. Tucker, 2021. "A modular tool to query and inducibly disrupt biomolecular condensates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Diana M. Mitrea & Jaclyn A. Cika & Christopher B. Stanley & Amanda Nourse & Paulo L. Onuchic & Priya R. Banerjee & Aaron H. Phillips & Cheon-Gil Park & Ashok A. Deniz & Richard W. Kriwacki, 2018. "Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guocheng Fang & Zhen Qiao & Luqi Huang & Hui Zhu & Jun Xie & Tian Zhou & Zhongshu Xiong & I-Hsin Su & Dayong Jin & Yu-Cheng Chen, 2024. "Single-cell laser emitting cytometry for label-free nucleolus fingerprinting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Richoo B. Davis & Anushka Supakar & Aishwarya Kanchi Ranganath & Mahdi Muhammad Moosa & Priya R. Banerjee, 2024. "Heterotypic interactions can drive selective co-condensation of prion-like low-complexity domains of FET proteins and mammalian SWI/SNF complex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Xiaocen Jin & Hikari Tanaka & Meihua Jin & Kyota Fujita & Hidenori Homma & Maiko Inotsume & Huang Yong & Kenichi Umeda & Noriyuki Kodera & Toshio Ando & Hitoshi Okazawa, 2023. "PQBP5/NOL10 maintains and anchors the nucleolus under physiological and osmotic stress conditions," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Marta Vicioso-Mantis & Raquel Fueyo & Claudia Navarro & Sara Cruz-Molina & Wilfred F. J. Ijcken & Elena Rebollo & Álvaro Rada-Iglesias & Marian A. Martínez-Balbás, 2022. "JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Ellen H. Brumbaugh-Reed & Yang Gao & Kazuhiro Aoki & Jared E. Toettcher, 2024. "Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Edward Courchaine & Sara Gelles-Watnick & Martin Machyna & Korinna Straube & Sarah Sauyet & Jade Enright & Karla M. Neugebauer, 2022. "The coilin N-terminus mediates multivalent interactions between coilin and Nopp140 to form and maintain Cajal bodies," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Yongli Shan & Yanqi Zhang & Yanxing Wei & Cong Zhang & Huaisong Lin & Jiangping He & Junwei Wang & Wenjing Guo & Heying Li & Qianyu Chen & Tiancheng Zhou & Qi Xing & Yancai Liu & Jiekai Chen & Guangji, 2024. "METTL3/METTL14 maintain human nucleoli integrity by mediating SUV39H1/H2 degradation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48496-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.