IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48482-z.html
   My bibliography  Save this article

Mechanical-scan-free multicolor super-resolution imaging with diffractive spot array illumination

Author

Listed:
  • Ning Xu

    (Tsinghua University)

  • Sarah E. Bohndiek

    (University of Cambridge
    University of Cambridge)

  • Zexing Li

    (University of Cambridge)

  • Cilong Zhang

    (Tsinghua University)

  • Qiaofeng Tan

    (Tsinghua University)

Abstract

Point-scanning microscopy approaches are transforming super-resolution imaging. Despite achieving parallel high-speed imaging using multifocal techniques, efficient multicolor imaging methods with high-quality illumination are currently lacking. In this paper, we present for the first time Mechanical-scan-free multiColor Super-resolution Microscopy (MCoSM) with spot array illumination, which enables mechanical-scan-free super-resolution imaging with adjustable resolution and a good effective field-of-view based on spatial light modulators. Through 100–2,500 s super-resolution spot illumination with different effective fields of view for imaging, we demonstrate the adjustable capacity of MCoSM. MCoSM extends existing spectral imaging capabilities through a time-sharing process involving different color illumination with phase-shift scanning while retaining the spatial flexibility of super-resolution imaging with diffractive spot array illumination. To demonstrate the prospects of MCoSM, we perform four-color imaging of fluorescent beads at high resolution. MCoSM provides a versatile platform for studying molecular interactions in complex samples at the nanoscale level.

Suggested Citation

  • Ning Xu & Sarah E. Bohndiek & Zexing Li & Cilong Zhang & Qiaofeng Tan, 2024. "Mechanical-scan-free multicolor super-resolution imaging with diffractive spot array illumination," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48482-z
    DOI: 10.1038/s41467-024-48482-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48482-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48482-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yicong Wu & Xiaofei Han & Yijun Su & Melissa Glidewell & Jonathan S. Daniels & Jiamin Liu & Titas Sengupta & Ivan Rey-Suarez & Robert Fischer & Akshay Patel & Christian Combs & Junhui Sun & Xufeng Wu , 2021. "Multiview confocal super-resolution microscopy," Nature, Nature, vol. 600(7888), pages 279-284, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Akshay Patel & Yicong Wu & Xiaofei Han & Yijun Su & Tim Maugel & Hari Shroff & Sougata Roy, 2022. "Cytonemes coordinate asymmetric signaling and organization in the Drosophila muscle progenitor niche," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48482-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.