IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48460-5.html
   My bibliography  Save this article

Intermittency in the not-so-smooth elastic turbulence

Author

Listed:
  • Rahul K. Singh

    (Okinawa Institute of Science and Technology Graduate University)

  • Prasad Perlekar

    (Tata Institute of Fundamental Research)

  • Dhrubaditya Mitra

    (KTH Royal Institute of Technology and Stockholm University)

  • Marco E. Rosti

    (Okinawa Institute of Science and Technology Graduate University)

Abstract

Elastic turbulence is the chaotic fluid motion resulting from elastic instabilities due to the addition of polymers in small concentrations at very small Reynolds ( $${{{{{{{\rm{Re}}}}}}}}$$ Re ) numbers. Our direct numerical simulations show that elastic turbulence, though a low $${{{{{{{\rm{Re}}}}}}}}$$ Re phenomenon, has more in common with classical, Newtonian turbulence than previously thought. In particular, we find power-law spectra for kinetic energy E(k) ~ k−4 and polymeric energy Ep(k) ~ k−3/2, independent of the Deborah (De) number. This is further supported by calculation of scale-by-scale energy budget which shows a balance between the viscous term and the polymeric term in the momentum equation. In real space, as expected, the velocity field is smooth, i.e., the velocity difference across a length scale r, δu ~ r but, crucially, with a non-trivial sub-leading contribution r3/2 which we extract by using the second difference of velocity. The structure functions of second difference of velocity up to order 6 show clear evidence of intermittency/multifractality. We provide additional evidence in support of this intermittent nature by calculating moments of rate of dissipation of kinetic energy averaged over a ball of radius r, εr, from which we compute the multifractal spectrum.

Suggested Citation

  • Rahul K. Singh & Prasad Perlekar & Dhrubaditya Mitra & Marco E. Rosti, 2024. "Intermittency in the not-so-smooth elastic turbulence," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48460-5
    DOI: 10.1038/s41467-024-48460-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48460-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48460-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Groisman & V. Steinberg, 2000. "Elastic turbulence in a polymer solution flow," Nature, Nature, vol. 405(6782), pages 53-55, May.
    2. Atul Varshney & Victor Steinberg, 2019. "Elastic Alfven waves in elastic turbulence," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somfai, Ellák & Morozov, Alexander N. & van Saarloos, Wim, 2006. "Modeling viscoelastic flow with discrete methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(1), pages 93-97.
    2. Avila-de la Rosa, G. & Carrillo-Navas, H. & Echeverría, J.C. & Bello-Pérez, L.A. & Vernon-Carter, E.J. & Alvarez-Ramirez, J., 2015. "Mechanisms of elastic turbulence in gelatinized starch dispersions," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 29-38.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48460-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.