Proteostatic reactivation of the developmental transcription factor TBX3 drives BRAF/MAPK-mediated tumorigenesis
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-48173-9
Download full text from publisher
References listed on IDEAS
- Peitao Zhang & Haixia Guan & Shukai Yuan & Huili Cheng & Jian Zheng & Zhenlei Zhang & Yifan Liu & Yang Yu & Zhaowei Meng & Xiangqian Zheng & Li Zhao, 2022. "Targeting myeloid derived suppressor cells reverts immune suppression and sensitizes BRAF-mutant papillary thyroid cancer to MAPK inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Peitao Zhang & Haixia Guan & Shukai Yuan & Huili Cheng & Jian Zheng & Zhenlei Zhang & Yifan Liu & Yang Yu & Zhaowei Meng & Xiangqian Zheng & Li Zhao, 2022. "Author Correction: Targeting myeloid derived suppressor cells reverts immune suppression and sensitizes BRAF-mutant papillary thyroid cancer to MAPK inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
- Achuth Padmanabhan & Nicholes Candelaria & Kwong-Kwok Wong & Bryan C. Nikolai & David M. Lonard & Bert W. O’Malley & JoAnne S. Richards, 2018. "USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
- Yihan Peng & Qingchao Liao & Wei Tan & Changmin Peng & Zhaohua Hu & Yali Chen & Zhuqing Li & Jing Li & Bei Zhen & Wenge Zhu & Xiangpan Li & Yi Yao & Qibin Song & Chengsheng Liu & Xiangdong Qi & Fuchu , 2019. "The deubiquitylating enzyme USP15 regulates homologous recombination repair and cancer cell response to PARP inhibitors," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sebastien Martinez & Shifei Wu & Michael Geuenich & Ahmad Malik & Ramona Weber & Tristan Woo & Amy Zhang & Gun Ho Jang & Dzana Dervovic & Khalid N. Al-Zahrani & Ricky Tsai & Nassima Fodil & Philippe G, 2024. "In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48173-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.