IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48109-3.html
   My bibliography  Save this article

SARS-CoV-2 Mpro responds to oxidation by forming disulfide and NOS/SONOS bonds

Author

Listed:
  • Patrick Y. A. Reinke

    (Deutsches Elektronen-Synchrotron DESY)

  • Robin Schubert

    (European XFEL GmbH)

  • Dominik Oberthür

    (Deutsches Elektronen-Synchrotron DESY)

  • Marina Galchenkova

    (Deutsches Elektronen-Synchrotron DESY)

  • Aida Rahmani Mashhour

    (Deutsches Elektronen-Synchrotron DESY)

  • Sebastian Günther

    (Deutsches Elektronen-Synchrotron DESY)

  • Anaïs Chretien

    (European XFEL GmbH)

  • Adam Round

    (European XFEL GmbH)

  • Brandon Charles Seychell

    (Universität Hamburg)

  • Brenna Norton-Baker

    (Max Plank Institute for the Structure and Dynamics of Matter
    University of California at Irvine)

  • Chan Kim

    (European XFEL GmbH)

  • Christina Schmidt

    (European XFEL GmbH)

  • Faisal H. M. Koua

    (European XFEL GmbH)

  • Alexandra Tolstikova

    (Deutsches Elektronen-Synchrotron DESY)

  • Wiebke Ewert

    (Deutsches Elektronen-Synchrotron DESY)

  • Gisel Esperanza Peña Murillo

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

  • Grant Mills

    (European XFEL GmbH)

  • Henry Kirkwood

    (European XFEL GmbH)

  • Hévila Brognaro

    (Universität Hamburg)

  • Huijong Han

    (European XFEL GmbH)

  • Jayanath Koliyadu

    (European XFEL GmbH)

  • Joachim Schulz

    (European XFEL GmbH)

  • Johan Bielecki

    (European XFEL GmbH)

  • Julia Lieske

    (Deutsches Elektronen-Synchrotron DESY)

  • Julia Maracke

    (Deutsches Elektronen-Synchrotron DESY)

  • Juraj Knoska

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg)

  • Kristina Lorenzen

    (European XFEL GmbH)

  • Lea Brings

    (European XFEL GmbH)

  • Marcin Sikorski

    (European XFEL GmbH)

  • Marco Kloos

    (European XFEL GmbH)

  • Mohammad Vakili

    (Deutsches Elektronen-Synchrotron DESY
    European XFEL GmbH)

  • Patrik Vagovic

    (Deutsches Elektronen-Synchrotron DESY
    European XFEL GmbH)

  • Philipp Middendorf

    (Deutsches Elektronen-Synchrotron DESY)

  • Raphael Wijn

    (European XFEL GmbH)

  • Richard Bean

    (European XFEL GmbH)

  • Romain Letrun

    (European XFEL GmbH)

  • Seonghyun Han

    (European XFEL GmbH
    Gwangju Institute of Science and Technology)

  • Sven Falke

    (Deutsches Elektronen-Synchrotron DESY)

  • Tian Geng

    (Sosei Heptares)

  • Tokushi Sato

    (European XFEL GmbH)

  • Vasundara Srinivasan

    (Universität Hamburg)

  • Yoonhee Kim

    (European XFEL GmbH)

  • Oleksandr M. Yefanov

    (Deutsches Elektronen-Synchrotron DESY)

  • Luca Gelisio

    (European XFEL GmbH)

  • Tobias Beck

    (Universität Hamburg
    The Hamburg Centre for Ultrafast Imaging)

  • Andrew S. Doré

    (Sosei Heptares
    CHARM Therapeutics Ltd.)

  • Adrian P. Mancuso

    (European XFEL GmbH
    La Trobe University
    Harwell Science and Innovation Campus)

  • Christian Betzel

    (Universität Hamburg
    The Hamburg Centre for Ultrafast Imaging)

  • Saša Bajt

    (Deutsches Elektronen-Synchrotron DESY
    The Hamburg Centre for Ultrafast Imaging)

  • Lars Redecke

    (Universität zu Lübeck
    Deutsches Elektronen-Synchrotron DESY)

  • Henry N. Chapman

    (Deutsches Elektronen-Synchrotron DESY
    Universität Hamburg
    The Hamburg Centre for Ultrafast Imaging)

  • Alke Meents

    (Deutsches Elektronen-Synchrotron DESY)

  • Dušan Turk

    (Jamova cesta 39
    Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Jamova 39)

  • Winfried Hinrichs

    (Felix-Hausdorff-Str. 4)

  • Thomas J. Lane

    (Deutsches Elektronen-Synchrotron DESY
    The Hamburg Centre for Ultrafast Imaging
    CHARM Therapeutics Ltd.)

Abstract

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein’s crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.

Suggested Citation

  • Patrick Y. A. Reinke & Robin Schubert & Dominik Oberthür & Marina Galchenkova & Aida Rahmani Mashhour & Sebastian Günther & Anaïs Chretien & Adam Round & Brandon Charles Seychell & Brenna Norton-Baker, 2024. "SARS-CoV-2 Mpro responds to oxidation by forming disulfide and NOS/SONOS bonds," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48109-3
    DOI: 10.1038/s41467-024-48109-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48109-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48109-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lisa-Marie Funk & Gereon Poschmann & Fabian Rabe von Pappenheim & Ashwin Chari & Kim M. Stegmann & Antje Dickmanns & Marie Wensien & Nora Eulig & Elham Paknia & Gabi Heyne & Elke Penka & Arwen R. Pear, 2024. "Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Norman Tran & Sathish Dasari & Sarah A. E. Barwell & Matthew J. McLeod & Subha Kalyaanamoorthy & Todd Holyoak & Aravindhan Ganesan, 2023. "The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48109-3. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.