IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47486-z.html
   My bibliography  Save this article

A hemoprotein with a zinc-mirror heme site ties heme availability to carbon metabolism in cyanobacteria

Author

Listed:
  • Nicolas Grosjean

    (Brookhaven National Laboratory
    Lawrence Berkeley National Laboratory)

  • Estella F. Yee

    (Brookhaven National Laboratory)

  • Desigan Kumaran

    (Brookhaven National Laboratory)

  • Kriti Chopra

    (Brookhaven National Laboratory)

  • Macon Abernathy

    (SLAC National Accelerator Laboratory)

  • Sandeep Biswas

    (Washington University)

  • James Byrnes

    (Brookhaven National Laboratory)

  • Dale F. Kreitler

    (Brookhaven National Laboratory)

  • Jan-Fang Cheng

    (Lawrence Berkeley National Laboratory)

  • Agnidipta Ghosh

    (Albert Einstein College of Medicine)

  • Steven C. Almo

    (Albert Einstein College of Medicine)

  • Masakazu Iwai

    (University of California
    Lawrence Berkeley National Laboratory)

  • Krishna K. Niyogi

    (University of California
    Lawrence Berkeley National Laboratory
    University of California)

  • Himadri B. Pakrasi

    (Washington University)

  • Ritimukta Sarangi

    (SLAC National Accelerator Laboratory)

  • Hubertus Dam

    (Brookhaven National Laboratory)

  • Lin Yang

    (Brookhaven National Laboratory)

  • Ian K. Blaby

    (Lawrence Berkeley National Laboratory
    Lawrence Berkeley National Laboratory)

  • Crysten E. Blaby-Haas

    (Brookhaven National Laboratory
    Lawrence Berkeley National Laboratory
    Lawrence Berkeley National Laboratory)

Abstract

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.

Suggested Citation

  • Nicolas Grosjean & Estella F. Yee & Desigan Kumaran & Kriti Chopra & Macon Abernathy & Sandeep Biswas & James Byrnes & Dale F. Kreitler & Jan-Fang Cheng & Agnidipta Ghosh & Steven C. Almo & Masakazu I, 2024. "A hemoprotein with a zinc-mirror heme site ties heme availability to carbon metabolism in cyanobacteria," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47486-z
    DOI: 10.1038/s41467-024-47486-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47486-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47486-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Tagliabue & Andrew R. Bowie & Philip W. Boyd & Kristen N. Buck & Kenneth S. Johnson & Mak A. Saito, 2017. "The integral role of iron in ocean biogeochemistry," Nature, Nature, vol. 543(7643), pages 51-59, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Junhui Li & Xiuli Fu & Yue Bai & Haixin Zhang & Zongbao Liu & Rongsheng Zhao, 2024. "Dual Effect of Hydrothermal Fluid on Shale Oil Reservoir in Gulong Sag, Songliao Basin: Constrained by C-O Isotope and Geochemistry," Energies, MDPI, vol. 17(16), pages 1-17, August.
    3. Tim L. Jeffers & Samuel O. Purvine & Carrie D. Nicora & Ryan McCombs & Shivani Upadhyaya & Adrien Stroumza & Ken Whang & Sean D. Gallaher & Alice Dohnalkova & Sabeeha S. Merchant & Mary Lipton & Krish, 2024. "Iron rescues glucose-mediated photosynthesis repression during lipid accumulation in the green alga Chromochloris zofingiensis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Cecilia Githukia & Maureen Cheserek & Dennis Otieno & Evans Menach & Domitila Kyule-Muendo & Kevin Obiero & Jonathan Munguti, 2024. "Nutritional Composition of Value-added Fish Products from Selected Fish Species in Kenya," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 13(2), pages 1-56, October.
    5. Dongdong Wang & Jiawei Liu & Changlai Wang & Weiyun Zhang & Guangbao Yang & Yun Chen & Xiaodong Zhang & Yinglong Wu & Long Gu & Hongzhong Chen & Wei Yuan & Xiaokai Chen & Guofeng Liu & Bin Gao & Qianw, 2023. "Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Matsushita, Kyohei & Hori, Masakazu & Yamane, Fumihiro & Asano, Kota, 2023. "Incorporating traditional ecological knowledge into holistic watershed management: Fishery forests in Japan," Ecological Economics, Elsevier, vol. 204(PA).
    7. Alex Pullen & David L. Barbeau & Andrew L. Leier & Jordan T. Abell & Madison Ward & Austin Bruner & Mary Kate Fidler, 2022. "A westerly wind dominated Puna Plateau during deposition of upper Pleistocene loessic sediments in the subtropical Andes, South America," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47486-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.