Highly defective ultra-small tetravalent MOF nanocrystals
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-47426-x
Download full text from publisher
References listed on IDEAS
- Xueling Wang & Qiang Lyu & Tiezheng Tong & Kuo Sun & Li-Chiang Lin & Chuyang Y. Tang & Fenglin Yang & Michael D. Guiver & Xie Quan & Yingchao Dong, 2022. "Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Sujing Wang & Hong Giang T. Ly & Mohammad Wahiduzzaman & Charlotte Simms & Iurii Dovgaliuk & Antoine Tissot & Guillaume Maurin & Tatjana N. Parac-Vogt & Christian Serre, 2022. "A zirconium metal-organic framework with SOC topological net for catalytic peptide bond hydrolysis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Pengpeng Zhang & Emma Tevaarwerk & Byoung-Nam Park & Donald E. Savage & George K. Celler & Irena Knezevic & Paul G. Evans & Mark A. Eriksson & Max G. Lagally, 2006. "Electronic transport in nanometre-scale silicon-on-insulator membranes," Nature, Nature, vol. 439(7077), pages 703-706, February.
- Simon Krause & Volodymyr Bon & Irena Senkovska & Daniel M. Többens & Dirk Wallacher & Renjith S. Pillai & Guillaume Maurin & Stefan Kaskel, 2018. "The effect of crystallite size on pressure amplification in switchable porous solids," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shuo Liu & Chaochao Dun & Feipeng Yang & Kang-Lan Tung & Dominik Wierzbicki & Sanjit Ghose & Kaiwen Chen & Linfeng Chen & Richard Ciora & Mohd A. Khan & Zhengxi Xuan & Miao Yu & Jeffrey J. Urban & Mar, 2024. "A general flame aerosol route to kinetically stabilized metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xin Yuan & Xiaoling Wu & Jun Xiong & Binhang Yan & Ruichen Gao & Shuli Liu & Minhua Zong & Jun Ge & Wenyong Lou, 2023. "Hydrolase mimic via second coordination sphere engineering in metal-organic frameworks for environmental remediation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47426-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.