IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47354-w.html
   My bibliography  Save this article

Nonlocality activation in a photonic quantum network

Author

Listed:
  • Luis Villegas-Aguilar

    (Griffith University)

  • Emanuele Polino

    (Griffith University)

  • Farzad Ghafari

    (Griffith University)

  • Marco Túlio Quintino

    (LIP6)

  • Kiarn T. Laverick

    (Griffith University)

  • Ian R. Berkman

    (The University of New South Wales)

  • Sven Rogge

    (The University of New South Wales)

  • Lynden K. Shalm

    (National Institute of Standards and Technology)

  • Nora Tischler

    (Griffith University)

  • Eric G. Cavalcanti

    (Griffith University)

  • Sergei Slussarenko

    (Griffith University)

  • Geoff J. Pryde

    (Griffith University)

Abstract

Bell nonlocality refers to correlations between two distant, entangled particles that challenge classical notions of local causality. Beyond its foundational significance, nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation. Nonlocality quickly deteriorates in the presence of noise, and restoring nonlocal correlations requires additional resources. These often come in the form of many instances of the input state and joint measurements, incurring a significant resource overhead. Here, we experimentally demonstrate that single copies of Bell-local states, incapable of violating any standard Bell inequality, can give rise to nonlocality after being embedded into a quantum network of multiple parties. We subject the initial entangled state to a quantum channel that broadcasts part of the state to two independent receivers and certify the nonlocality in the resulting network by violating a tailored Bell-like inequality. We obtain these results without making any assumptions about the prepared states, the quantum channel, or the validity of quantum theory. Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications, even in scenarios dominated by noise.

Suggested Citation

  • Luis Villegas-Aguilar & Emanuele Polino & Farzad Ghafari & Marco Túlio Quintino & Kiarn T. Laverick & Ian R. Berkman & Sven Rogge & Lynden K. Shalm & Nora Tischler & Eric G. Cavalcanti & Sergei Slussa, 2024. "Nonlocality activation in a photonic quantum network," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47354-w
    DOI: 10.1038/s41467-024-47354-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47354-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47354-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul G. Kwiat & Salvador Barraza-Lopez & André Stefanov & Nicolas Gisin, 2001. "Experimental entanglement distillation and ‘hidden’ non-locality," Nature, Nature, vol. 409(6823), pages 1014-1017, February.
    2. Daniel Cavalcanti & Mafalda L. Almeida & Valerio Scarani & Antonio Acín, 2011. "Quantum networks reveal quantum nonlocality," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    3. J. L. O'Brien & G. J. Pryde & A. G. White & T. C. Ralph & D. Branning, 2003. "Demonstration of an all-optical quantum controlled-NOT gate," Nature, Nature, vol. 426(6964), pages 264-267, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yan-Han & Yang, Xue & Luo, Ming-Xing, 2023. "Device-independently verifying full network nonlocality of quantum networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    2. Martin Plöschner & Marcos Maestre Morote & Daniel Stephen Dahl & Mickael Mounaix & Greta Light & Aleksandar D. Rakić & Joel Carpenter, 2022. "Spatial tomography of light resolved in time, spectrum, and polarisation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Shuai Shi & Biao Xu & Kuan Zhang & Gen-Sheng Ye & De-Sheng Xiang & Yubao Liu & Jingzhi Wang & Daiqin Su & Lin Li, 2022. "High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Sebastian Philipp Neumann & Alexander Buchner & Lukas Bulla & Martin Bohmann & Rupert Ursin, 2022. "Continuous entanglement distribution over a transnational 248 km fiber link," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47354-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.