IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47310-8.html
   My bibliography  Save this article

Mechanism and structural dynamics of sulfur transfer during de novo [2Fe-2S] cluster assembly on ISCU2

Author

Listed:
  • Vinzent Schulz

    (Institut für Zytobiologie, Philipps-Universität Marburg
    Zentrum für Synthetische Mikrobiologie SynMikro)

  • Ralf Steinhilper

    (Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics)

  • Jonathan Oltmanns

    (Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau)

  • Sven-A. Freibert

    (Institut für Zytobiologie, Philipps-Universität Marburg
    Zentrum für Synthetische Mikrobiologie SynMikro
    Steinmühle—Schule & Internat)

  • Nils Krapoth

    (Institut für Zytobiologie, Philipps-Universität Marburg
    Zentrum für Synthetische Mikrobiologie SynMikro)

  • Uwe Linne

    (Mass Spectrometry Facility of the Department of Chemistry, Philipps-Universität Marburg)

  • Sonja Welsch

    (Max Planck Institute of Biophysics)

  • Maren H. Hoock

    (Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau)

  • Volker Schünemann

    (Department of Physics, Biophysics and Medical Physics, University of Kaiserslautern-Landau)

  • Bonnie J. Murphy

    (Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics)

  • Roland Lill

    (Institut für Zytobiologie, Philipps-Universität Marburg
    Zentrum für Synthetische Mikrobiologie SynMikro)

Abstract

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich’s ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin’s molecular role in this fundamental process.

Suggested Citation

  • Vinzent Schulz & Ralf Steinhilper & Jonathan Oltmanns & Sven-A. Freibert & Nils Krapoth & Uwe Linne & Sonja Welsch & Maren H. Hoock & Volker Schünemann & Bonnie J. Murphy & Roland Lill, 2024. "Mechanism and structural dynamics of sulfur transfer during de novo [2Fe-2S] cluster assembly on ISCU2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47310-8
    DOI: 10.1038/s41467-024-47310-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47310-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47310-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas G. Fox & Xiaodi Yu & Xidong Feng & Henry J. Bailey & Alain Martelli & Joseph F. Nabhan & Claire Strain-Damerell & Christine Bulawa & Wyatt W. Yue & Seungil Han, 2019. "Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Holger Webert & Sven-Andreas Freibert & Angelo Gallo & Torsten Heidenreich & Uwe Linne & Stefan Amlacher & Ed Hurt & Ulrich Mühlenhoff & Lucia Banci & Roland Lill, 2014. "Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    3. Michal T. Boniecki & Sven A. Freibert & Ulrich Mühlenhoff & Roland Lill & Miroslaw Cygler, 2017. "Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    4. Sylvain Gervason & Djabir Larkem & Amir Ben Mansour & Thomas Botzanowski & Christina S. Müller & Ludovic Pecqueur & Gwenaelle Le Pavec & Agnès Delaunay-Moisan & Omar Brun & Jordi Agramunt & Anna Grand, 2019. "Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Aubérie Parent & Xavier Elduque & David Cornu & Laura Belot & Jean-Pierre Le Caer & Anna Grandas & Michel B. Toledano & Benoit D’Autréaux, 2015. "Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols," Nature Communications, Nature, vol. 6(1), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven-A. Freibert & Michal T. Boniecki & Claudia Stümpfig & Vinzent Schulz & Nils Krapoth & Dennis R. Winge & Ulrich Mühlenhoff & Oliver Stehling & Miroslaw Cygler & Roland Lill, 2021. "N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. M. Tanvir Rahman & M. Kristian Koski & Joanna Panecka-Hofman & Werner Schmitz & Alexander J. Kastaniotis & Rebecca C. Wade & Rik K. Wierenga & J. Kalervo Hiltunen & Kaija J. Autio, 2023. "An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47310-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.