IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47217-4.html
   My bibliography  Save this article

Differentiation shifts from a reversible to an irreversible heterochromatin state at the DM1 locus

Author

Listed:
  • Tayma Handal

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center
    The Hebrew University School of Medicine)

  • Sarah Juster

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center
    The Hebrew University School of Medicine)

  • Manar Abu Diab

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center
    The Hebrew University School of Medicine)

  • Shira Yanovsky-Dagan

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center
    The Hebrew University School of Medicine)

  • Fouad Zahdeh

    (Shaare Zedek Medical Center)

  • Uria Aviel

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center
    The Hebrew University School of Medicine)

  • Roni Sarel-Gallily

    (The Hebrew University)

  • Shir Michael

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center
    The Hebrew University School of Medicine)

  • Ester Bnaya

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center
    The Hebrew University School of Medicine)

  • Shulamit Sebban

    (The Hebrew University-Hadassah Medical School)

  • Yosef Buganim

    (The Hebrew University-Hadassah Medical School)

  • Yotam Drier

    (Faculty of Medicine, The Hebrew University)

  • Vincent Mouly

    (Centre de Recherche en Myologie)

  • Stefan Kubicek

    (CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences)

  • Walther J. A. A. Broek

    (Radboud University Medical Center)

  • Derick G. Wansink

    (Radboud University Medical Center)

  • Silvina Epsztejn-Litman

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center)

  • Rachel Eiges

    (The Eisenberg R&D Authority, Shaare Zedek Medical Center
    The Hebrew University School of Medicine)

Abstract

Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.

Suggested Citation

  • Tayma Handal & Sarah Juster & Manar Abu Diab & Shira Yanovsky-Dagan & Fouad Zahdeh & Uria Aviel & Roni Sarel-Gallily & Shir Michael & Ester Bnaya & Shulamit Sebban & Yosef Buganim & Yotam Drier & Vinc, 2024. "Differentiation shifts from a reversible to an irreversible heterochromatin state at the DM1 locus," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47217-4
    DOI: 10.1038/s41467-024-47217-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47217-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47217-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan Lister & Mattia Pelizzola & Yasuyuki S. Kida & R. David Hawkins & Joseph R. Nery & Gary Hon & Jessica Antosiewicz-Bourget & Ronan O’Malley & Rosa Castanon & Sarit Klugman & Michael Downes & Ruth , 2011. "Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells," Nature, Nature, vol. 471(7336), pages 68-73, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire Vinel & Gabriel Rosser & Loredana Guglielmi & Myrianni Constantinou & Nicola Pomella & Xinyu Zhang & James R. Boot & Tania A. Jones & Thomas O. Millner & Anaelle A. Dumas & Vardhman Rakyan & Je, 2021. "Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    2. Anyou Wang & Ying Du & Qianchuan He & Chunxiao Zhou, 2013. "A Quantitative System for Discriminating Induced Pluripotent Stem Cells, Embryonic Stem Cells and Somatic Cells," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
    3. Patricia Gerdes & Sue Mei Lim & Adam D. Ewing & Michael R. Larcombe & Dorothy Chan & Francisco J. Sanchez-Luque & Lucinda Walker & Alexander L. Carleton & Cini James & Anja S. Knaupp & Patricia E. Car, 2022. "Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Lakhal-Chaieb Lajmi & Greenwood Celia M.T. & Ouhourane Mohamed & Zhao Kaiqiong & Abdous Belkacem & Oualkacha Karim, 2017. "A smoothed EM-algorithm for DNA methylation profiles from sequencing-based methods in cell lines or for a single cell type," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 313-331, December.
    5. Jingting Xu & Hong Hu & Yang Dai, 2016. "LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-18, September.
    6. Anne Senabouth & Maciej Daniszewski & Grace E. Lidgerwood & Helena H. Liang & Damián Hernández & Mehdi Mirzaei & Stacey N. Keenan & Ran Zhang & Xikun Han & Drew Neavin & Louise Rooney & Maria Isabel G, 2022. "Transcriptomic and proteomic retinal pigment epithelium signatures of age-related macular degeneration," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Sun Shuying & Yu Xiaoqing, 2016. "HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher’s exact test," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 55-67, March.
    8. Yu Xiaoqing & Sun Shuying, 2016. "HMM-DM: identifying differentially methylated regions using a hidden Markov model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 69-81, March.
    9. Maria Arez & Melanie Eckersley-Maslin & Tajda Klobučar & João Gilsa Lopes & Felix Krueger & Annalisa Mupo & Ana Cláudia Raposo & David Oxley & Samantha Mancino & Anne-Valerie Gendrel & Bruno Bernardes, 2022. "Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    10. Nazifa Ahmed Moumi & Badhan Das & Zarin Tasnim Promi & Nishat Anjum Bristy & Md Shamsuzzoha Bayzid, 2019. "Quartet-based inference of cell differentiation trees from ChIP-Seq histone modification data," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-25, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47217-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.