IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47164-0.html
   My bibliography  Save this article

Molecular insight into the initial hydration of tricalcium aluminate

Author

Listed:
  • Xing Ming

    (Macau University of Science and Technology, Avenida Wai Long)

  • Wen Si

    (Dalian University of Technology)

  • Qinglu Yu

    (University of Macau, Avenida da Universidade)

  • Zhaoyang Sun

    (University of Macau, Avenida da Universidade)

  • Guotao Qiu

    (University of Macau, Avenida da Universidade)

  • Mingli Cao

    (Dalian University of Technology)

  • Yunjian Li

    (Macau University of Science and Technology, Avenida Wai Long)

  • Zongjin Li

    (Macau University of Science and Technology, Avenida Wai Long)

Abstract

Portland cement (PC) is ubiquitously used in construction for centuries, yet the elucidation of its early-age hydration remains a challenge. Understanding the initial hydration progress of tricalcium aluminate (C3A) at molecular scale is thus crucial for tackling this challenge as it exhibits a proclivity for early-stage hydration and plays a pivotal role in structural build-up of cement colloids. Herein, we implement a series of ab-initio calculations to probe the intricate molecular interactions of C3A during its initial hydration process. The C3A surface exhibits remarkable chemical activity in promoting water dissociation, which in turn facilitates the gradual desorption of Ca ions through a metal-proton exchange reaction. The dissolution pathways and free energies of these Ca ions follow the ligand-exchange mechanism with multiple sequential reactions to form the ultimate products where Ca ions adopt fivefold or sixfold coordination. Finally, these Ca complexes reprecipitate on the remaining Al-rich layer through the interface-coupled dissolution-reprecipitation mechanism, demonstrating dynamically stable inner-sphere adsorption states. The above results are helpful in unmasking the early-age hydration of PC and advancing the rational design of cement-based materials through the bottom-up approach.

Suggested Citation

  • Xing Ming & Wen Si & Qinglu Yu & Zhaoyang Sun & Guotao Qiu & Mingli Cao & Yunjian Li & Zongjin Li, 2024. "Molecular insight into the initial hydration of tricalcium aluminate," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47164-0
    DOI: 10.1038/s41467-024-47164-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47164-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47164-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Chen & Yangzezhi Zheng & Yang Zhou & Wei Zhang & Weihuan Li & Wei She & Jiaping Liu & Changwen Miao, 2023. "Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yunjian Li & Hui Pan & Qing Liu & Xing Ming & Zongjin Li, 2022. "Ab initio mechanism revealing for tricalcium silicate dissolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Katerina Ioannidou & Matej Kanduč & Lunna Li & Daan Frenkel & Jure Dobnikar & Emanuela Del Gado, 2016. "The crucial effect of early-stage gelation on the mechanical properties of cement hydrates," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    4. R. Réocreux & É. Girel & P. Clabaut & A. Tuel & M. Besson & A. Chaumonnot & A. Cabiac & P. Sautet & C. Michel, 2019. "Reactivity of shape-controlled crystals and metadynamics simulations locate the weak spots of alumina in water," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Yuan Chen & Yangzezhi Zheng & Yang Zhou & Wei Zhang & Weihuan Li & Wei She & Jiaping Liu & Changwen Miao, 2023. "Author Correction: Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    6. Shiva Shirani & Ana Cuesta & Alejandro Morales-Cantero & Isabel Santacruz & Ana Diaz & Pavel Trtik & Mirko Holler & Alexander Rack & Bratislav Lukic & Emmanuel Brun & Inés R. Salcedo & Miguel A. G. Ar, 2023. "4D nanoimaging of early age cement hydration," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. M.J. Abdolhosseini Qomi & K.J. Krakowiak & M. Bauchy & K.L. Stewart & R. Shahsavari & D. Jagannathan & D.B. Brommer & A. Baronnet & M.J. Buehler & S. Yip & F.-J Ulm & K.J. Van Vliet & R.J-.M. Pellenq, 2014. "Combinatorial molecular optimization of cement hydrates," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiva Shirani & Ana Cuesta & Alejandro Morales-Cantero & Isabel Santacruz & Ana Diaz & Pavel Trtik & Mirko Holler & Alexander Rack & Bratislav Lukic & Emmanuel Brun & Inés R. Salcedo & Miguel A. G. Ar, 2023. "4D nanoimaging of early age cement hydration," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Xinhang Xu & Chongchong Qi & Xabier M. Aretxabaleta & Chundi Ma & Dino Spagnoli & Hegoi Manzano, 2024. "The initial stages of cement hydration at the molecular level," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Michal Ženíšek & Jan Pešta & Martin Tipka & Vladimír Kočí & Petr Hájek, 2020. "Optimization of RC Structures in Terms of Cost and Environmental Impact—Case Study," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    4. Shuihong Zhu & Sen Wang & Yifan Huang & Qiyun Tang & Tianqi Fu & Riyan Su & Chaoyu Fan & Shuang Xia & Pooi See Lee & Youhui Lin, 2024. "Bioinspired structural hydrogels with highly ordered hierarchical orientations by flow-induced alignment of nanofibrils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yuan Chen & Yangzezhi Zheng & Yang Zhou & Wei Zhang & Weihuan Li & Wei She & Jiaping Liu & Changwen Miao, 2023. "Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jiang, Jinyang & Zheng, Qi & Yan, Yiru & Guo, Dong & Wang, Fengjuan & Wu, Shengping & Sun, Wei, 2018. "Design of a novel nanocomposite with C-S-H@LA for thermal energy storage: A theoretical and experimental study," Applied Energy, Elsevier, vol. 220(C), pages 395-407.
    7. Blessing Adeleke & John Kinuthia & Jonathan Oti, 2021. "Optimization of MgO-GGBS Cementitious Systems Using Thermo-Chemical Approaches," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    8. Liu, Xiaoli & Jani, Ruchita & Orisakwe, Esther & Johnston, Conrad & Chudzinski, Piotr & Qu, Ming & Norton, Brian & Holmes, Niall & Kohanoff, Jorge & Stella, Lorenzo & Yin, Hongxi & Yazawa, Kazuaki, 2021. "State of the art in composition, fabrication, characterization, and modeling methods of cement-based thermoelectric materials for low-temperature applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47164-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.