IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47076-z.html
   My bibliography  Save this article

Room temperature 3D carbon microprinting

Author

Listed:
  • Fernand E. Torres-Davila

    (University of Central Florida
    University of Central Florida)

  • Katerina L. Chagoya

    (University of Central Florida)

  • Emma E. Blanco

    (University of Central Florida)

  • Saqib Shahzad

    (University of Central Florida)

  • Lorianne R. Shultz-Johnson

    (University of Central Florida)

  • Mirra Mogensen

    (University of Central Florida
    University of Central Florida)

  • Andre Gesquiere

    (University of Central Florida
    University of Central Florida)

  • Titel Jurca

    (University of Central Florida
    University of Central Florida
    University of Central Florida)

  • Nabil Rochdi

    (Cadi Ayyad University
    Cadi Ayyad University)

  • Richard G. Blair

    (University of Central Florida
    University of Central Florida)

  • Laurene Tetard

    (University of Central Florida
    University of Central Florida)

Abstract

Manufacturing custom three-dimensional (3D) carbon functional materials is of utmost importance for applications ranging from electronics and energy devices to medicine, and beyond. In lieu of viable eco-friendly synthesis pathways, conventional methods of carbon growth involve energy-intensive processes with inherent limitations of substrate compatibility. The yearning to produce complex structures, with ultra-high aspect ratios, further impedes the quest for eco-friendly and scalable paths toward 3D carbon-based materials patterning. Here, we demonstrate a facile process for carbon 3D printing at room temperature, using low-power visible light and a metal-free catalyst. Within seconds to minutes, this one-step photocatalytic growth yields rod-shaped microstructures with aspect ratios up to ~500 and diameters below 10 μm. The approach enables the rapid patterning of centimeter-size arrays of rods with tunable height and pitch, and of custom complex 3D structures. The patterned structures exhibit appealing luminescence properties and ohmic behavior, with great potential for optoelectronics and sensing applications, including those interfacing with biological systems.

Suggested Citation

  • Fernand E. Torres-Davila & Katerina L. Chagoya & Emma E. Blanco & Saqib Shahzad & Lorianne R. Shultz-Johnson & Mirra Mogensen & Andre Gesquiere & Titel Jurca & Nabil Rochdi & Richard G. Blair & Lauren, 2024. "Room temperature 3D carbon microprinting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47076-z
    DOI: 10.1038/s41467-024-47076-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47076-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47076-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyunwoo Yuk & Baoyang Lu & Shen Lin & Kai Qu & Jingkun Xu & Jianhong Luo & Xuanhe Zhao, 2020. "3D printing of conducting polymers," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songlin Zhang & Mengjuan Zhou & Mingyang Liu & Zi Hao Guo & Hao Qu & Wenshuai Chen & Swee Ching Tan, 2023. "Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Tiefeng Liu & Johanna Heimonen & Qilun Zhang & Chi-Yuan Yang & Jun-Da Huang & Han-Yan Wu & Marc-Antoine Stoeckel & Tom P. A. Pol & Yuxuan Li & Sang Young Jeong & Adam Marks & Xin-Yi Wang & Yuttapoom P, 2023. "Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Gun-Hee Lee & Ye Rim Lee & Hanul Kim & Do A Kwon & Hyeonji Kim & Congqi Yang & Siyoung Q. Choi & Seongjun Park & Jae-Woong Jeong & Steve Park, 2022. "Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xinjian Xie & Zhonggang Xu & Xin Yu & Hong Jiang & Hongjiao Li & Wenqian Feng, 2023. "Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Huimin He & Hao Li & Aoyang Pu & Wenxiu Li & Kiwon Ban & Lizhi Xu, 2023. "Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Elaheh Sedghamiz & Modan Liu & Wolfgang Wenzel, 2022. "Challenges and limits of mechanical stability in 3D direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Sajjad Rahmani Dabbagh & Misagh Rezapour Sarabi & Mehmet Tugrul Birtek & Siamak Seyfi & Metin Sitti & Savas Tasoglu, 2022. "3D-printed microrobots from design to translation," Nature Communications, Nature, vol. 13(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47076-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.