IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46916-2.html
   My bibliography  Save this article

Experimentally realized physical-model-based frugal wave control in metasurface-programmable complex media

Author

Listed:
  • Jérôme Sol

    (IETR - UMR 6164)

  • Hugo Prod’homme

    (IETR - UMR 6164)

  • Luc Le Magoarou

    (IETR - UMR 6164)

  • Philipp del Hougne

    (IETR - UMR 6164)

Abstract

Metasurface-programmable radio environments are considered a key ingredient of next-generation wireless networks. Yet, identifying a metasurface configuration that yields a desired wireless functionality in an unknown complex environment was so far only achieved with closed-loop iterative feedback schemes. Here, we introduce open-loop wave control in metasurface-programmable complex media by estimating the parameters of a compact physics-based forward model. Our experiments demonstrate orders-of-magnitude advantages over deep-learning-based digital-twin benchmarks in terms of accuracy, compactness and required calibration examples. Strikingly, our parameter estimation also works without phase information and without providing measurements for all considered scattering coefficients. These unique generalization capabilities of our pure-physics model unlock unforeseen and previously inaccessible frugal wave control protocols that significantly alleviate the measurement complexity. For instance, we achieve coherent wave control (focusing or perfect absorption) and phase-shift-keying backscatter communications in metasurface-programmable complex media with intensity-only measurements. Our approach is also directly relevant to dynamic metasurface antennas, microwave-based signal processors and emerging in situ reconfigurable nanophotonic, optical and room-acoustical systems.

Suggested Citation

  • Jérôme Sol & Hugo Prod’homme & Luc Le Magoarou & Philipp del Hougne, 2024. "Experimentally realized physical-model-based frugal wave control in metasurface-programmable complex media," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46916-2
    DOI: 10.1038/s41467-024-46916-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46916-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46916-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanting Zhao & Ya Shuang & Menglin Wei & Tie Jun Cui & Philipp del Hougne & Lianlin Li, 2020. "Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Jérôme Sol & David R. Smith & Philipp Hougne, 2022. "Meta-programmable analog differentiator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Lang Zhang & Francesco Monticone & Owen D. Miller, 2023. "All electromagnetic scattering bodies are matrix-valued oscillators," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jérôme Sol & David R. Smith & Philipp Hougne, 2022. "Meta-programmable analog differentiator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jing Cheng Liang & Lei Zhang & Zhangjie Luo & Rui Zhe Jiang & Zhang Wen Cheng & Si Ran Wang & Meng Ke Sun & Shi Jin & Qiang Cheng & Tie Jun Cui, 2024. "A filtering reconfigurable intelligent surface for interference-free wireless communications," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Xin Wang & Jia Qi Han & Guan Xuan Li & De Xiao Xia & Ming Yang Chang & Xiang Jin Ma & Hao Xue & Peng Xu & Rui Jie Li & Kun Yi Zhang & Hai Xia Liu & Long Li & Tie Jun Cui, 2023. "High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Tianshuo Qiu & Qiang An & Jianqi Wang & Jiafu Wang & Cheng-Wei Qiu & Shiyong Li & Hao Lv & Ming Cai & Jianyi Wang & Lin Cong & Shaobo Qu, 2024. "Vision-driven metasurfaces for perception enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46916-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.