A structure-based designed small molecule depletes hRpn13Pru and a select group of KEN box proteins
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-46644-7
Download full text from publisher
References listed on IDEAS
- Xin Wang & Youn-Sang Jung & Sohee Jun & Sunhye Lee & Wenqi Wang & Andrea Schneider & Young Sun Oh & Steven H. Lin & Bum-Joon Park & Junjie Chen & Khandan Keyomarsi & Jae-Il Park, 2016. "PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
- Patrick Schreiner & Xiang Chen & Koraljka Husnjak & Leah Randles & Naixia Zhang & Suzanne Elsasser & Daniel Finley & Ivan Dikic & Kylie J. Walters & Michael Groll, 2008. "Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction," Nature, Nature, vol. 453(7194), pages 548-552, May.
- Xiuxiu Lu & Venkata R. Sabbasani & Vasty Osei-Amponsa & Christine N. Evans & Julianna C. King & Sergey G. Tarasov & Marzena Dyba & Sudipto Das & King C. Chan & Charles D. Schwieters & Sulbha Choudhari, 2021. "Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
- Koraljka Husnjak & Suzanne Elsasser & Naixia Zhang & Xiang Chen & Leah Randles & Yuan Shi & Kay Hofmann & Kylie J. Walters & Daniel Finley & Ivan Dikic, 2008. "Proteasome subunit Rpn13 is a novel ubiquitin receptor," Nature, Nature, vol. 453(7194), pages 481-488, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiuxiu Lu & Venkata R. Sabbasani & Vasty Osei-Amponsa & Christine N. Evans & Julianna C. King & Sergey G. Tarasov & Marzena Dyba & Sudipto Das & King C. Chan & Charles D. Schwieters & Sulbha Choudhari, 2021. "Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
- Bongjun Kim & Yuanjian Huang & Kyung-Pil Ko & Shengzhe Zhang & Gengyi Zou & Jie Zhang & Moon Jong Kim & Danielle Little & Lisandra Vila Ellis & Margherita Paschini & Sohee Jun & Kwon-Sik Park & Jichao, 2024. "PCLAF-DREAM drives alveolar cell plasticity for lung regeneration," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Nathan Jespersen & Kai Ehrenbolger & Rahel R. Winiger & Dennis Svedberg & Charles R. Vossbrinck & Jonas Barandun, 2022. "Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46644-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.